DOI QR코드

DOI QR Code

Electromechanical Properties of Smart Repair Materials based on Rapid Setting Cement Including Fine Steel Slag Aggregates

제강 슬래그 잔골재가 혼입된 초속경 시멘트 기반 스마트 보수재료의 전기역학적 특성

  • 김태욱 (세종대학교 건설환경공학과) ;
  • 김민경 (세종대학교 건설환경공학과) ;
  • 김동주 (세종대학교 건설환경공학과 철도인프라연구소 )
  • Received : 2023.07.10
  • Accepted : 2023.07.31
  • Published : 2023.08.31

Abstract

This study investigated the electromechanical properties of cement based smart repair materials (SRMs) according to the different amounts of fine steel slag aggregates (FSSAs). SRMs can self-diagnose the quality of repairing and self-sense the damage of repaired zone. The replacement ratios of FSSAs to sand for SRMs were 0% (FSSA00), 25% (FSSA25), and 50% (FSSA50) by sand weight. The electrical resistivity of SRMs generally decreased as the compressive stress of SRMs increased: the electrical resistivity of FSSA25 at the age of 7 hours decreased from 78.16 to 63.68 kΩ-cm as the compressive stress increased from 0 to 22.37 MPa. As the replacement ratio of FSSAs by weight of sand increased from 0% to 25%, the stress sensitivity coefficient (SSC) of SRM at the age of 7 h increased from 0.471 to 0.828 %/MPa owing to the increased number of partially conductive paths in the SRMs. However, as the replacement ratio of FSSAs further increased up to 50%, the SSC decreased from 0.828 to 0.649 %/MPa because some of the partially conductive paths changed to continued conductive ones. SRMs are expected to self-sense the quality and future damage of repaired zone only by measuring the electrical resistivity of the repaired zone in addition to fast recovery in the mechanical resistance of structures.

본 연구에서는 제강 슬래그 (fine steel slag aggregates, FSSAs) 혼입량에 따른 스마트 보수재료 (smart repair materials, SRMs)의 전기역학적 거동을 조사하였다. SRMs는 보수 품질을 스스로 진단하고 보수 부위의 손상을 자체적으로 감지할 수 있다. FSSAs는 SRMs에 모래 중량 대비 0% (FSSA00), 25% (FSSA25), 그리고 50% (FSSA50) 치환되어 혼입되었다. SRMs의 전기저항률은 일반적으로 압축 응력이 증가함에 따라 감소하였다: 재령 7시간 기준 FSSA25의 전기저항률은 압축 응력이 0에서 22.57 MPa로 증가함에 따라 78.16에서 63.68 kΩ-cm으로 감소하였다. FSSAs의 모래 중량 대비 치환율이 0%에서 25%로 증가함에 따라 재령 7시간 기준 응력 민감도 (stress sensitivity coefficient, SSC)는 매트릭스 내 부분적인 전도성 경로 수의 증가로 인해 0.471에서 0.828 %/MPa로 증가하였다. 하지만, 치환율이 50%까지 증가함에 따라 부분적인 전도성 경로들의 일부가 연속적인 전도성 경로로 변화하여 SSC는 0.828에서 0.649 %/MPa로 감소하였다. SRMs는 보수 부위의 전기저항률만을 측정하는 것으로 보수 품질을 진단하고 보수 부위의 추가 손상을 스스로 감지할 수 있을 뿐만 아니라 구조물의 역학적 성능을 빠르게 회복시킬 수 있을 것으로 기대한다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2022-00142566).

References

  1. Al-Gburi, M., Jonasson, J. E., and Nilsson, M. (2022), Reducing thermal crack risks caused by restraint in young concrete - a case study on walls of water tanks, Nordic Concrete Research, Sciendo, 66(1), 41-54.  https://doi.org/10.2478/ncr-2022-0001
  2. Ann, T. H., Bang, S. Y., and Kim, K. M. (2016), Development of convenient repair materials for the surface treatment method of cracked concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, 20(1), 44-50 (in Korean).  https://doi.org/10.11112/jksmi.2016.20.4.044
  3. Assaad, J. J. (2018), Development and use of polymer-modified cement for adhesive and repair applications, Construction and Building Materials, Elsevier Ltd., 163, 139-148.  https://doi.org/10.1016/j.conbuildmat.2017.12.103
  4. Garbacz, A., Piotrowski, T., Courard, L., and Kwasniewski, L. (2017), On the evaluation of interface quality in concrete repair system by means of impact-echo signal analysis, Construction and Building Materials, Elsevier Ltd., 134, 311-323.  https://doi.org/10.1016/j.conbuildmat.2016.12.064
  5. Han, B., Yu, X., and Ou, J. (2014), Self-sensing concrete in smart structures, Butterworth Heinemann, Elsevier, Kidlington. 
  6. Hashimoto, K., Shiotani, T., Nishida, T., and Okude, N. (2019), Repair inspection technique based on elastic-wave tomography applied for deteriorated concrete structures, Elasticity of Materials - Basic Principles and Design of Structures, IntechOpen. 
  7. Jumaat, Z., Rosalia, V., and Hilario, J. (2006), A review of the repair of reinforced concrete beams, Journal of Applied Science Research, Academia, 2(6), 317-326. 
  8. Kan, Y. C., Lee, M. G., and Lee, H. W. (2021), Experimental investigation of mode-I fracture toughness of real-cracked concrete repaired by epoxy, Construction and Building Materials, Elsevier Ltd., 293, 123490. 
  9. Kee, S. H. (2015), Evaluating the depth of a surface-opening crack in concrete slabs using surface wave measurements, Journal of the Korea Institute for Structural Maintenance and Inspection, 19(3), 104-112 (in Korean, with English abstract).  https://doi.org/10.11112/jksmi.2015.19.3.104
  10. Kim, H. J., Liu, X., Ahn, E. J., Shin, M. S., Shin, S. W., and Sim, S. H. (2019), Performance assessment method for crack repair in concrete using PZT-based electromechanical impedance technique, NDT and E International, Elsevier Ltd., 104, 90-97.  https://doi.org/10.1016/j.ndteint.2019.04.004
  11. Kim, M. K., Le, H. V., and Kim, D. J. (2021), Electromechanical response of smart ultra-high performance concrete under external loads corresponding to different electrical measurements, Sensors, MDPI, 21, 1281. 
  12. Kim, T. U., Kim, M. K., and Kim, D. J. (2022), Investigation of the electromechanical response of smart ultra-high performance fiber reinforced concretes under flexural, Journal of the Korea Institute for Structural Maintenance and Inspection, 26(5), 57-65 (in Korean, with English abstract).  https://doi.org/10.11112/JKSMI.2022.26.5.57
  13. Kim, T. U., Kim, M. K., Park, J. W., and Kim, D. J. (2023), Effects of temperature and humidity on self-stress sensing capacity of smart concrete blocks, Journal of Building Engineering, Elsevier Ltd., 69, 106227. 
  14. Kim, T. U., Le, H. V., Park, J. W., Kim, S. E., Jang, Y., and Kim, D. J. (2021), Development of a smart concrete block with an eccentric load sensing capacity, Construction and Building Materials, Elsevier Ltd., 306, 124881. 
  15. Kwon, C. W., Kong, T. W., Lee, S. H., and Lee, H. B. (2013), Cement mortar strength properties of using high early strength cement and blast furnace slag powder, Proceedings of the Korea Institute for Structural Maintenance and Inspection Conference, 487-488 (in Korean, with English abstract). 
  16. Le, H. V., Kim, M. K., Kim, S. E., Chung, S. Y., and Kim, D. J. (2021), Enhancing self-stress sensing ability of smart ultra-high performance concretes under compression by using nano functional fillers, Journal of Building Engineering, Elsevier Ltd., 44, 102717. 
  17. Le, H. V., Lee, D. H., and Kim, D. J. (2020), Effects of steel slag aggregate size and content on piezoresistive responses of smart ultra-high-performance fiber-reinforced concretes, Sensors and Actuators A: Physical, Elsevier Ltd., 305, 111925. 
  18. Lee, S. Y., Le, H. V., and Kim, D. J. (2019), Self-stress sensing smart concrete containing fine steel slag aggregates and steel fibers under high compressive stress, Construction and Building Materials, Elsevier Ltd., 220, 149-160.  https://doi.org/10.1016/j.conbuildmat.2019.05.197
  19. Nalon, H. G., Ribeiro, J. C. L., Araujo, E. N. D., Pedroti, L. G., Carvalho, J. M. F., Santos, R. F., and Aparecido-ferreira, A. (2020), Effects of different kinds of carbon black nanoparticles on the piezoresistive and mechanical properties of cement-based composites, Journal of Building Engineering, Elsevier Ltd., 32, 101724. 
  20. Pang, B., Zhang, Y., and Liu, G. (2018), Study on the effect of waterborne epoxy resins on the performance and microstructure of cement paste, Construction and Building Materials, Elsevier Ltd., 167, 831-845.  https://doi.org/10.1016/j.conbuildmat.2018.02.096
  21. Sevim, O., Jiang, Z., and Ozbulut, O. E. (2022), Effects of graphene nanoplatelets type on self-sensing properties of cement mortar composites, Construction and Building Materials, Elsevier Ltd., 359, 129488. 
  22. Suo, Y., Xia, H., Guo, R., and Yang, Y. (2022), Study on self-sensing capabilities of smart cements filled with graphene oxide under dynamic cyclic loading, Journal of Building Engineering, Elsevier Ltd., 58, 104775. 
  23. Wang, C., Xie, J., Shen, Y., and Jiang, J. (2022), Research on the mechanical behavior of a steel-concrete composite link slab on a simply supported girder bridge, Metals, MDPI, 12,1410. 
  24. Wang, H., Shen, J., Liu, J., Lu, S., and He, G. (2019), Influence of carbon nanofiber content and sodium chloride solution on the stability of resistance and the following self-sensing performance of carbon nanofiber cement paste, Case Studies in Construction Materials, Elsevier Ltd., 11, e00247. 
  25. Wang, L., Zhang, Y., Du, H., Feng, G., and Qi, T. (2023), Health monitoring of C60 smart concrete based on self-sensing, Materials Today Communications, Elsevier Ltd., 35, 105834. 
  26. Wang, X., Yao, J., Li, X., Guo, Y., Shen, A., and Pu, H. (2018), Mechanical properties improvement mechanism of silica fume-modified ultrafine cement used to repair pavement microcracks, Advances in Materials Science and Engineering, Hindawi, 2018, 4898230. 
  27. Zhang, H., Li, J., Kang, F., and Zhang, J. (2022), Monitoring and evaluation of the repair quality of concrete cracks using piezoelectric smart aggregates, Construction and Building Materials, Elsevier Ltd., 317, 125775. 
  28. Zhuang, S., and Wang, Q. (2021), Inhibition mechanisms of steel slag on the early-age hydration of cement, Cement and Concrete Research, Elsevier Ltd., 140, 106283.