DOI QR코드

DOI QR Code

실외 여름철 온난화 및 가뭄 처리가 소나무 묘목의 이상생장 반응에 미치는 영향

Effects of open-field summer warming and drought on the abnormal shoot growth of Pinus densiflora seedlings

  • 조희재 (고려대학교 대학원 환경생태공학과) ;
  • 박지은 (고려대학교 대학원 환경생태공학과) ;
  • 김진서 (고려대학교 대학원 환경생태공학과) ;
  • 김광중 (고려대학교 대학원 환경생태공학과) ;
  • 김가은 (고려대학교 대학원 환경생태공학과) ;
  • 김형섭 (고려대학교 대학원 환경생태공학과) ;
  • 손요환 (고려대학교 대학원 환경생태공학과)
  • Heejae Jo (Environmental Science and Ecological Engineering, Korea University) ;
  • Jieun Park (Environmental Science and Ecological Engineering, Korea University) ;
  • Jinseo Kim (Environmental Science and Ecological Engineering, Korea University) ;
  • Gwang-Jung Kim (Environmental Science and Ecological Engineering, Korea University) ;
  • Gaeun Kim (Environmental Science and Ecological Engineering, Korea University) ;
  • Hyung-Sub Kim (Environmental Science and Ecological Engineering, Korea University) ;
  • Yowhan Son (Environmental Science and Ecological Engineering, Korea University)
  • 투고 : 2023.07.31
  • 심사 : 2023.12.13
  • 발행 : 2023.12.31

초록

소나무의 생장은 전년도에 형성된 겨울눈에서 가지가 한마디 발생하고 초여름에 생장을 종료하는 것이 일반적이다. 그러나 외부 자극을 받은 소나무는 이상생장 반응을 통해 추가로 새 가지를 신장시키기도 한다. 본 연구는 여름철 온난화 및 가뭄 처리가 소나무 묘목의 이상생장에 미치는 영향을 파악하는 것을 목표로 하였다. 2022년 3월, 2개 온도 조절(대조, 4℃ 증가)×2개 강수 조절(대조, 가뭄)×5개 반복의 실험구(1.5m×1.0m) 총 20개를 조성하고 5월 14일부터 8월 8일까지 87일간 온난화 처리를, 2022년 5월 14일부터 6월 15일까지 33일간 강수를 100% 차단하는 강수 처리를 진행하였다. 실험이 종료된 2022년 11월에 이상생장 여부 및 잎 발생 단계를 확인하였고, 처리가 끝난 8월과 묘목 생장이 종료되는 10월에 각각 묘고와 근원경을 측정하여 초기값(5월) 대비 생장률을 계산하였다. 소나무 묘목의 이상생장 발생률은 온난화 처리에 따라 유의하게 증가하여 온난화 처리구(38.4%)에서 대조구(7.5%) 대비 410.6% 증가된 발생률을 보였으나, 묘고 및 근원경 생장률은 8월과 10월 모두에서 온난화 및 가뭄 처리에 따라 유의한 차이가 없었다. 따라서, 여름철 3개월 간 지속된 고온은 이상생장 발생률을 증가시키지만, 이상생장은 생장률에는 영향을 주지 않는 것으로 나타났다. 본 연구 결과 이상생장 가지의 발생은 고온에 따라 증가된 식물의 발달 속도와 다음 발생 단계로의 조기 전환에 의하여 유도된 것으로 보인다.

Pinus densiflora is a fixed-growth coniferous species that elongates its shoot once a year and finishes growing in early summer. However, it may produce additional shoots in the same year in response to external stimuli, called abnormal shoot growth. This study investigated the effects of open-field summer warming and drought on the abnormal shoot growth of P. densiflora seedlings. In March 2022, two factorial combinations were constructed, including two temperature treatments (control and 4℃ increase) and two precipitation treatments (control and drought), with five replicates for each combination. The temperature treatment was performed for 87 days from May 14 to August 8, 2022, and the precipitation treatment was performed for 33 days from May 14 to June 15, blocking 100% of the ambient rainfall. The abnormal shoot occurrence rate and leaf unfolding stages were measured in November, and the shoot and root collar diameter growth rates were calculated by comparing the seedling height and root collar diameter measured in August(after the cessation of treatment) and October(after the end of growing period) with the initial values (i.e., May 2022). The abnormal shoot occurrence rate significantly increased under the warming treatment, showing a 410.6% increase in the warming plots (38.4%) compared to the control plots (7.5%). There was no significant difference in the shoot and root collar diameter growth rate regarding warming and drought treatments. Abnormal shoots may have been affected by high temperatures by inducing early transition to the next ontogenetic stage.

키워드

과제정보

본 연구는 기초연구사업으로써 2021년도 정부(교육부)의 재원으로 한국연구재단(과제번호: NRF-2021R1A6A1A10045235), 국토교통부/국토교통과학기술진흥원(과제번호: 23UMRG-B158194-04), 산림청 탄소흡수원 특성화대학원 사업, 산림과학기술 연구개발사업(2022460B10-2324-0201)과 정인욱학술재단(Chunginwook Scholarship Foundation)의 지원을 받아 수행되었습니다.

참고문헌

  1. Allen CD, AK Macalady, H Chenchouni, D Bachelet, N McDowell, M Vennetier T Kitzberger, A Rigling, DD Breshears, EH Hogg, P Gonzalez, R Fensham, Z Zhang, J Castro, N Demidova, JH Lim, G Allard, SW Running, A Semerci and N Cobb. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259:660-684. https://doi.org/10.1016/j.foreco.2009.09.001
  2. Badeck FW, A Bondeau, K Bottcher, D Doktor, W Lucht, J Schaber and S Sitch. 2004. Responses of spring phenology to climate change. New Phytol. 162:295-309. https://doi.org/10.1111/j.1469-8137.2004.01059.x
  3. Borchert R, G Rivera and W Hagnauer. 2002. Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica 34:27-39. https://doi.org/10.1111/j.1744-7429.2002.tb00239.x
  4. Byun JG, WK Lee, DK Nor, SH Kim, JK Choi and YJ Lee. 2010. The relationship between tree radial growth and topographic and climatic factors in red pine and oak in central regions of Korea. J. Kor. Soc. For. Sci. 99:908-913.
  5. Byun JG, WK Lee, M Kim, DA Kwak, H Kwak, T Park, WH Byun, Y Son, JK Choi, YJ Lee, J Saborowski, DJ Chung and JH Jung. 2013. Radial growth response of Pinus densiflora and Quercus spp. to topographic and climatic factors in South Korea. J. Plant Ecol. 6:380-392. https://doi.org/10.1093/jpe/rtt001
  6. Cehulic I, K Sever, I Katicic Bogdan, A Jazbec, Z Skvorc and S Bogdan. 2019. Drought impact on leaf phenology and spring frost susceptibility in a Quercus robur L. provenance trial. Forests 10:50. https://doi.org/10.3390/f10010050
  7. Chang H, SH Han, J An, MJ Park and Y Son. 2018. Warming results in advanced spring phenology, delayed leaf fall, and developed abnormal shoots in Pinus densiflora seedlings. Trees 32:1473-1479. https://doi.org/10.1007/s00468-018-1709-9
  8. Cho HK, SG Hong and JJ Kim. 2001. Studies on growth and biomass production of Abies koreana seedlings under different relative light intensity. J. Kor. For. En. 20:58-68.
  9. Fisichelli N, A Wright, K Rice, A Mau, C Buschena and PB Reich. 2014. First-year seedlings and climate change: species-specific responses of 15 North American tree species. Oikos 123:1331-1340. https://doi.org/10.1111/oik.01349
  10. Hover A, F Buissart, Y Caraglio, C Heinz, F Pailler, M Ramel, M Vennetier, B Prevosto and S Sabatier. 2017. Growth phenology in Pinus halepensis Mill.: Apical shoot bud content and shoot elongation. Ann. For. Sci. 74:1-10. https://doi.org/10.1007/s13595-017-0637-y
  11. IPCC. 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge, United Kingdom. https://doi.org/10.1017/9781009325844
  12. Jo H, H Chang, SH Han, J An, AR Yang and Y Son. 2019. Abnormal shoot responses of Pinus densiflora seedlings to openfield experimental warming and precipitation manipulation. J. Climate Change Res. 10:1-8. https://doi.org/10.15531/ksccr.2019.10.1.1
  13. Jung E and S Lee. 2019. Study on the onset date and end date changes of extreme temperature events in South Korea. J. Clim. Res. 14:53-68. https://doi.org/10.14383/cri.2019.14.2.53
  14. Jung SH, AR Kim, JH An, CH Lim, H Lee and CS Lee. 2020. Abnormal shoot growth in Korean red pine as a response to microclimate changes due to urbanization in Korea. Int. J. Biometeorol. 64:571-584. https://doi.org/10.1007/s00484-019-01843-6
  15. KFS. 2015. Guidelines for Seed and Seedling Management. Korea Forest Service. Daejeon, Korea.
  16. KFS. 2022. Statistical Yearbook of Forestry. Korea Forest Service. Daejoen, Korea.
  17. Kim DH, JU Kim, YH Byun, TJ Kim, JW Kim, YH Kim, JB Ahn, DH Cha, SK Min and EC Chang. 2021. Future projection of extreme climate over the Korean peninsula using multi-RCM in CORDEX-EA Phase 2 Project. Atmosphere 31:607-623. https://doi.org/10.14191/Atmos.2021.31.5.607
  18. KMA. 2023. Automatic Weather Station (AWS) Observations. Korea Meteorological Administration. Daejeon, Korea. https://data.kma.go.kr/. Accessed December 11, 2023.
  19. Kollas C, C Korner and CF Randin. 2014. Spring frost and growing season length co-control the cold range limits of broadleaved trees. J. Biogeogr. 41:773-783. https://doi.org/10.1111/jbi.12238
  20. Kozlowski TT. 1964. Shoot growth in woody plants. Bot. Rev. 30:335-392. https://doi.org/10.1007/BF02858538
  21. Kramer PJ and TT Kozlowski. 1979. Physiology of Woody Plants. First edition. Academic Press. New York, USA.
  22. Kruger EL and JC Volin. 2006. Reexamining the empirical relation between plant growth and leaf photosynthesis. Funct. Plant Biol. 33:421-429. https://doi.org/10.1071/FP05310
  23. Kushida T. 2005. Effect of high summer temperatures on lammas shoot elongation and flowering in Japanese red pine. Phyton 45:215-221.
  24. Lee CS, HG Song, HS Kim, B Lee, JH Pi, YC Cho, ES Seol, WS Oh, SA Park and SM Lee. 2007. Which environmental factors caused lammas shoot growth of Korean red pine? J. Ecol. Field Biol. 30:101-105. https://doi.org/10.5141/JEFB.2007.30.1.101
  25. Lee IH, SU Jo, YS Lee and HY Won. 2021. The long-term decay rate and nutrient dynamics during leaf litter decomposition of Pinus densiflora and Pinus thunbergii. Korean J. Environ. Biol. 39:374-382. https://doi.org/10.11626/KJEB.2021.39.3.374
  26. Lee SH and WT Kwon. 2004. A variation of summer rainfall in Korea. J. Korean Geogr. Soc. 39:819-832.
  27. Nakashima A and M Yamamoto. 2006. Effects of year-round warming on the growth of Pinus densiflora SIEB. et ZUCC. J. Jpn. Soc. Reveget. Tech. 32:127-130. https://doi.org/10.7211/jjsrt.32.127
  28. NIMS. 2020. Global Climate Change Prospect Report. National Institute of Meteorological Sciences. Jeju, Korea. http://www.nims.go.kr/flexer/view.jsp?FileDir=/PU1076&SystemFileName=20220622143422_0.pdf&ftype=pdf&FileName=%EC%A0%84%EC%A7%80%EA%B5%AC%20%EA%B8%B0%ED%9B%84%EB%B3%80%ED%99%94%20%EC%A0%84%EB%A7%9D%EB%B3%B4%EA%B3%A0%EC%84%9C.pdf&org=KOR_OP_PU_MV_2&idx=757&c_idx=-999&seq=0. Accessed December 11, 2023.
  29. Odani K. 1977. Lammas shoot growth of Pinus densiflora Sieb. et Zucc. mediated by the exogenous cytokinin. J. Jpn. For. Soc. 59:22-23. https://doi.org/10.11519/jjfs1953.59.1_22
  30. Schermann N, WT Adams, SN Aitken and JC Bastien. 1997. Genetic parameters of stem form traits in a 9-year-old coastal Douglas-fir progeny test in Washington. Silvae Genet. 46:166-169.
  31. Sevanto S, NG Mcdowell, LT Dickman, R Pangle and WT Pockman. 2014. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 37:153-161. https://doi.org/10.1111/pce.12141
  32. Takahashi K and T Hirai. 2016. Seasonal change in xylem growth of Pinus densiflora in central Japan. Landsc. Ecol. Eng. 12:231-237. https://doi.org/10.1007/s11355-016-0292-8
  33. Thomas JB. 1958. The production of lammas shoots on jack pine in Ontario. For. Chron. 34:307-309. https://doi.org/10.5558/tfc34307-3
  34. Urban J, MW Ingwers, MA McGuire and RO Teskey. 2017. Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra. J. Exp. Bot. 68:1757-1767. https://doi.org/10.1093/jxb/erx052
  35. Zohner CM, L Mo, V Sebald and SS Renner. 2020. Leaf-out in northern ecotypes of wide-ranging trees requires less spring warming, enhancing the risk of spring frost damage at cold range limits. Glob. Ecol. Biogeogr. 29:1065-1072. https://doi.org/10.1111/geb.13088