DOI QR코드

DOI QR Code

Design and Performance Verification of a LWIR Zoom Camera for Drones

  • Received : 2023.06.22
  • Accepted : 2023.07.25
  • Published : 2023.08.25

Abstract

We present the optical design and experimental verification of resolving performance of a 3× long wavelength infrared (LWIR) zoom camera for drones. The effective focal length of the system varies from 24.5 mm at the wide angle position to 75.1 mm at the telephoto position. The design specifications of the system were derived from ground resolved distance (GRD) to recognize 3 m × 6 m target at a distance of 1 km, at the telephoto position. To satisfy the system requirement, the aperture (f-number) of the system is taken as F/1.6 and the final modulation transfer function (MTF) should be higher than 0.1 (10%). The measured MTF in the laboratory was 0.127 (12.7%), exceeds the system requirement. Outdoor targets were used to verify the comprehensive performance of the system. The system resolved 4-bar targets corresponding to the spatial resolution at the distance of 1 km, 1.4 km and 2 km.

Keywords

Acknowledgement

We would like to express our thanks to Siyoun Choi and Kyounghoon Baek of LIG Nex1 for their support in manufacturing and measurement.

References

  1. S. Sayani, M. W. Totaro, and K. Elgazzar, "Intelligent drone-based surveillance: application to parking lot monitoring and detection," Proc. SPIE 11021, 1102104 (2019). 
  2. G. M. Koretsky, J. F. Nicoll, and M. S. Taylor, "A tutorial on electro-optical/infrared (EO/IR) theory and systems," (IDA, Published Date: April, 2021), http://www.ida.org/research-andpublications/all/a/at/a-tutorial-on-electro-opticalinfrared-eoirtheory-and-systems (Accessed Date: Jul. 12, 2023). 
  3. A. Rogalski, M. Kopytko, and P. Martyniuk, Antimonide-based Infrared Detectors: A New Perspective, 1st ed. (SPIE Press, USA, 2018), pp. 231-237. 
  4. J. Follansbee, L. Wiley, P. Leslie, C. Revello, and R. Driggers, "Drone detection performance in the reflective bands: visible, near infrared, short wave infrared, and extended short wave infrared," Opt. Eng. 61, 095106 (2022). 
  5. A. Daniels, Field Guide to Infrared Systems, Detectors, and FPAs, 3rd ed. (SPIE press, USA, 2018), pp. 3-5. 
  6. J. Follansbee, L. Wiley, P. Leslie, C. Revello, R. Driggers, "Drone detection in the reflective band: Vis, NIR, SWIR, eSWIR," Proc. SPIE 12106, 121060A (2022). 
  7. T. Muller, H. Widak, M. Kollmann, A. Buller, L. W. Sommer, R. Spraul, A. Kroker, I. Kaufmann, A. Zube, F. Segor, T. Perschke, A. Lindner, and I. Tchouchenkov, "Drone detection, recognition, and assistance system for counter-UAV with VIS, radar, and radio sensors," Proc. SPIE 12096, 120960A (2022). 
  8. Q. Zhao, J. Hughes, and D. Lynos, "Drone proximity detection via air disturbance analysis," Proc. SPIE 11425, 114250L (2020). 
  9. G. C. Holst, Electro-Optical Imaging System Performance, 6th ed. (SPIE Press, USA, 2017), pp. 275-303. 
  10. E. Pinsky and O. Yaron, "Range prediction for color imagers toward a joint TRM and human perceptual model," Proc. SPIE 11538, 115380G (2020). 
  11. P. Bijl, M. A. Hogervorst, and A. Toet, "Progress in sensor performance testing, modeling and range prediction using the TOD method: an overview," Proc. SPIE 10178, 101780U (2017). 
  12. S. Kebler, R. Gal, and W. Wittenstein, "An intensified camera module for the range performance model TRM4," Proc. SPIE 11001, 1100109 (2019). 
  13. S. Kebler, R. Gal, and W. Wittenstein, "TRM4: Range performance model for electro-optical imaging systems," Proc. SPIE 10178, 101780P (2017). 
  14. B. P. Teaney, J. P. Reynolds, T. W. D. Bosq, and E. Repasi, "A TRM4 component for the Night Vision Integrated Performance Model (NV-IPM)," Proc. SPIE 9452, 94520H (2015). 
  15. D. M. Deaver, E. Flug, E. Boettcher, S. R. Smith, and B. Miller, "Infrared sensor modeling for human activity discrimination tasks in urban and maritime environment," Appl. Opt. 48, 3537-3556 (2009).  https://doi.org/10.1364/AO.48.003537
  16. G. C. Holst, Testing and Evaluation of Infrared Imaging Systems, 3rd ed. (SPIE Press, USA, 2008), pp. 297-328. 
  17. R. E. Hanna, "Using GRD to set E-O sensor design budgets," Proc. SPIE 3128, 110-119 (1997). 
  18. J. Williams and G. Potter, "Modeling and performance assessment in QinetiQ of EO and IR airborne reconnaissance systems," Proc. SPIE 4824, 102-111 (2002). 
  19. P. Coppo, C. Mastrandrea, M. Stagi, L. Calamai, and J. Nieke, "Sea and land surface temperature radiometer detection assembly design and performance," J. Appl. Remote. Sens. 8, 084979 (2014). 
  20. R. Driggers, G. Goranson, S. Butrimas, G. Holst, and O. Furxhi, "Simple target acquisition model based on Fλ/d," Opt. Eng. 60, 023104 (2021). 
  21. J. G. Hixson, B. P. Teaney, J. J. Graybeal, and G. Nehmetallah, "Analysis and modeling of observer performance while using an infrared imaging system," Opt. Eng. 59, 033106 (2020). 
  22. G. C. Holst and A. Mahalanobis, "Comparing pixels on target with NV-IPM range predictions," Proc. SPIE 12533, 1253302 (2023). 
  23. F. J. Alvarez-Rios, J. Diaz-Caro, F. Nombela, I. Barba, J. Exposito, C. Tapia, I. Sal, and I. Barbero, "Optical modeling and simulation of subpixel target infrared detection," Proc. SPIE 11865, 1186508 (2021). 
  24. W. J. Smith, Modern Optical Engineering, 4th ed. (McGraw-Hill, USA, 2008), pp. 351-364. 
  25. D. Malacara-Hernandez and Z. Malacara-Hernandez, Handbook of Optical Design, 3rd ed. (CRC Press, USA, 2013), pp. 468-481. 
  26. R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design, 2nd ed. (McGraw-Hill, USA, 2008), pp. 760-775. 
  27. "Optics and photonics - Optical transfer function - Principles of measurement of modulation transfer function (MTF) of sampled imaging systems," ISO 15529:2007, ISO (2010). 
  28. D. L. Hickman and S. J. Shepperd, "Imaging fusion systems for surveillance applications: design options and constraints for a tri-band camera," Proc. SPIE 11741, 117411L (2021). 
  29. R. G. Driggers, P. Cox, and M. Kelly, "National imagery interpretation rating system and the probabilities of detection, recognition, and identification," Opt. Eng. 36, 1952-1959 (2007). 
  30. H. Jun, C.-W. Kim, S. Kim, and B.-W. Kim, "A study of laboratory measurement of EO GRD resolution for airborne EO/IR sensor," J. KIMS Technol. 17, 793-799 (2014). 
  31. R. E. Hanna, "Modeling EO Sensor performance for flight test scenarios," Proc. SPIE 2555, 104-118 (1995).