Acknowledgement
본 연구는 한국연구재단의 "우주환경 보호를 위한 미래선도기술 개발 방안 심화연구"의 지원을 받아 작성한 논문입니다.
References
- Kessler DJ, Cour-Palais BG, Collision frequency of artificial satellites: the creation of a debris belt, J. Geophys. Res. Space Phys. 83, 2637-2646 (1978). https://doi.org/10.1029/ja083ia06p02637
- Bonnal C, Ruault JM, Desjean MC, Active debris removal: recent progress and current trends, Acta Astronaut. 85, 51-60 (2013). https://doi.org/10.1016/j.actaastro.2012.11.009
- Inter-Agency Space Debris Coordination Committee [IADC]. IADC space debris mitigation guideline, IADC-02-01, Revision 2 (2020) [Internet], viewed 2023 May 12, available from: https://orbitaldebris.jsc.nasa.gov/library/iadc-space-debris-guidelines-revision-2.pdf
- Visagie L, Lappas V, Erb S, Drag sails for space debris mitigation, Acta Astronaut. 109, 65-75 (2015). https://doi.org/10.1016/j.actaastro.2014.12.013
- Yoshida K, Achievements in space robotics, IEEE Robot. Autom. Mag. 16, 20-28 (2009). https://doi.org/10.1109/MRA.2009.934818
- Yoshida K, Nakanishi H, Ueno H, Inaba N, Nishimaki T, et al., Dynamics, control and impedance matching for robotic capture of a non-cooperative satellite, Adv. Robot. 18, 175-198 (2004). https://doi.org/10.1163/156855304322758015
- Flores-Abad A, Ma O, Pham K, Ulrich S, A review of space robotics technologies for on-orbit servicing, Prog. Aerosp. Sci. 68, 1-26 (2014). https://doi.org/10.1016/j.paerosci.2014.03.002
- St-Onge D, Gosselin C, Synthesis and design of a one degree-of-freedom planar deployable mechanism with a large expansion ratio, J. Mech. Robot. 8, 021025 (2016). https://doi.org/10.1115/1.4032101
- Choi J, Jung J, Lee D, Kim B, Articulated linkage arms based reliable capture device for janitor satellites, Acta Astronaut. 163, 91-99 (2019). https://doi.org/10.1016/j.actaastro.2019.03.002
- Bischof B, Kerstein L, Starke J, Guenther H, Foth WP, ROGER - Robotic geostationary orbit restorer, Proceedings of the 54th International Astronautical Congress of the International Astronautical Federation, Bremen, Germany, 2003.
- Golebiowski W, Michalczyk R, Dyrek M, Battista U, Wormnes K, Validated simulator for space debris removal with nets and other flexible tethers applications, Acta Astronaut. 129, 229-240 (2016). https://doi.org/10.1016/j.actaastro.2016.08.037
- Medina A, Cercos L, Stefanescu RM, Benvenuto R, Pesce V, et al., Validation results of satellite mock-up capturing experiment using nets, Acta Astronaut. 134, 314-332 (2017). https://doi.org/10.1016/j.actaastro.2017.02.019
- Shan M, Guo J, Gill E, Contact dynamics on net capturing of tumbling space debris, J. Guid. Control Dyn. 41, 2063-2072 (2018). https://doi.org/10.2514/1.g003460
- Botta EM, Sharf I, Misra AK, Simulation of tether-nets for capture of space debris and small asteroids, Acta Astronaut. 155, 448-461 (2019). https://doi.org/10.1016/j.actaastro.2018.07.046
- Heide EJ, Kruijff M, Tethers and debris mitigation, Acta Astronaut. 48, 503-516 (2001). https://doi.org/10.1016/S0094-5765(01)00074-1
- Estes RD, Lorenzini EC, Sanmartin J, Pelaez J, Martinez-Sanchez M, et al., Bare tethers for electrodynamic spacecraft propulsion, J. Spacecr. Rockets. 37, 205-211 (2012). https://doi.org/10.2514/2.3567
- Takeichi N, Practical operation strategy for deorbit of an electrodynamic tethered system, J. Spacecr. Rockets. 43, 1283-1288 (2012). https://doi.org/10.2514/1.19635
- Nishida SI, Kawamoto S, Okawa Y, Terui F, Kitamura S, Space debris removal system using a small satellite, Acta Astronaut. 65, 95-102 (2009). https://doi.org/10.1016/j.actaastro.2009.01.041
- Inarrea M, Lanchares V, Pascual AI, Salas JP, Attitude stabilization of electrodynamic tethers in elliptic orbits by time-delay feedback control, Acta Astronaut. 96, 280-295 (2014). https://doi.org/10.1016/j.actaastro.2013.12.011
- Forshaw JL, Aglietti GS, Navarathinam N, Kadhem H, Salmon T, et al., RemoveDEBRIS: an in-orbit active debris removal demonstration mission, Acta Astronaut. 127, 448-463 (2016). https://doi.org/10.1016/j.actaastro.2016.06.018
- Astroscale, ELSA-d mission update [Internet], viewed 2023 May 3, available from: https://astroscale.com/elsa-d-mission-update/
- Park SD, Sung DK, Choi SD, Overview of the KITSAT-1 and KITSAT-2 satellite systems , J. Astron. Space Sci. 13, 1-19 (1996).
- KAIST, Satellite Technology Research Center (SaTReC), KITSAT-2 [Internet], viewed 2023 May 5, available from: https://satrec.kaist.ac.kr/03_02.php
- Korea Aerospace Industries Association [KAIA], Policy - Status of Domestic Satellite and Launch Vehicle Development (Aerospace Industry, Seoul, Korea, 2010).
- Shin GH, Chae JS, Lee SH, Min KW, Sohn JD, et al., Operational concept of the NEXTSat-1 for science mission and space core technology verification, J. Astron. Space Sci. 31, 67-72 (2014). https://doi.org/10.5140/jass.2014.31.1.67
- Shin GH, Lee J, Jang TS, Kim DG, Jeong Y, Development and field test of the NEXTSat-2 synthetic aperture radar (SAR) antenna onboard vehicle, J. Space Technol. Appl. 1, 33-40 (2021). https://doi.org/10.52912/jsta.2021.1.1.33
- Lee J, Kim SG, Kim SY, Oh SH, Kim SH, et al., Concept of operation for microsatellite constellation system, in Proceedings of the KSAS 2022 Fall Conference, Jeju, Korea, 16-18 Nov 2023.
- Vallado DA, Fundamentals of Astrodynamics and Applications (Microcosm Press, Hawthorne, CA, 2013).