DOI QR코드

DOI QR Code

Orbital Transfer Process and Analysis of Small Satellite for Capturing Korean Satellite as Active Debris Removal (ADR) Mission

우리별 위성 포획 임무 수행을 위한 소형위성의 궤도 천이 방법 및 분석

  • Junchan Lee (Korea Advanced Institute of Science and Technology, Satellite Technology Research Center) ;
  • Kyungin Kang (Korea Advanced Institute of Science and Technology, Satellite Technology Research Center)
  • Received : 2023.03.26
  • Accepted : 2023.04.16
  • Published : 2023.05.31

Abstract

Active debris removal, a technology that approaches and removes space debris in orbit, and the on-orbit service, a technology for extending the mission life of satellites by fuel charging or by exchanging the battery, are gaining interest with the growth of the space community. SaTReC plans to develop a satellite capable of capturing and removing Korean satellites orbiting in space after the end of their missions. In contrast to the previously launched satellites by Korea, which were mainly intended to observe Earth and the space environment, rendezvous/docking technologies, as required in the future during, for instance, space exploration missions, will be implemented and demonstrated. In this paper, an orbital transition method for next-generation small satellites that will capture and remove space debris will be introduced. It is assumed that a small satellite with a mass of approximately 200 kg will be injected into the mission orbit through Korea Space Launch Vehicle-II in 2027. Because the satellite must access the target using a minimum amount of fuel, an approaching technology using Earth's J2 perturbation force has been developed. This method is expected to enable space debris removal missions for relatively lightweight satellites and to serve as the basis for carrying out a new type of space exploration in what is termed the 'Newspace' era.

우주상에 존재하는 우주물체에 접근하여 궤도상에서 제거하는 능동 제거 기술(active debris removal, ADR)과 연료 충전, 배터리 교환 등의 위성의 수명연장을 위한 기술인 궤도상 서비싱(on-orbit servicing)은 우주물체의 증가와 함께 그 관심이 커지고 있다. 인공위성연구소에서는 국내에서 발사되었던 국가 자산 중 임무가 종료된 후 궤도상에서 여전히 우주를 돌고 있는 국가 우주자산을 포획 및 제거하는 목적의 위성을 개발하기 위한 연구를 수행 중에 있다. ADR 소형위성은 지금껏 국내에서 개발되었던 지구 및 우주환경 관측 위성과 다르게 랑데부/도킹 기술 등을 포함한 우주 탐사 임무 등 미래 임무에 요구되는 기술을 구현 및 실증하는 것을 주요 임무로 가지고 있다. 본 논문에서는 여러 국가 우주자산들 중 1990년대에 발사된 우리별 위성의 포획 및 제거 임무를 갖고 있는 ADR 소형위성의 궤도 전이 방법에 대해서 소개한다. 소형 위성은 무게가 약 200 kg 이하가 되도록 개발을 수행할 예정이고, 2027년 한국형 발사체를 통해 궤도상에 투입되는 상황을 가정하여 임무를 설계했다. 특히, 지구의 J2 섭동력을 이용해서 목표물과 다른 RAAN 일변화를 만들어 줌으로써, 목표물로의 궤도면 변경을 직접 천이 방식과 비교하여 더 적은 연료를 이용하는 전략을 구성하였다. 이 방법을 이용하여 소형위성급 무게의 위성으로 우주쓰레기 제거 임무를 가능하게 하며, 뉴스페이스 시대에 새로운 형태의 우주탐사를 수행하는 기술 검증 플랫폼이 될 것으로 기대한다.

Keywords

Acknowledgement

본 연구는 한국연구재단의 "우주환경 보호를 위한 미래선도기술 개발 방안 심화연구"의 지원을 받아 작성한 논문입니다.

References

  1. Kessler DJ, Cour-Palais BG, Collision frequency of artificial satellites: the creation of a debris belt, J. Geophys. Res. Space Phys. 83, 2637-2646 (1978). https://doi.org/10.1029/ja083ia06p02637
  2. Bonnal C, Ruault JM, Desjean MC, Active debris removal: recent progress and current trends, Acta Astronaut. 85, 51-60 (2013). https://doi.org/10.1016/j.actaastro.2012.11.009
  3. Inter-Agency Space Debris Coordination Committee [IADC]. IADC space debris mitigation guideline, IADC-02-01, Revision 2 (2020) [Internet], viewed 2023 May 12, available from: https://orbitaldebris.jsc.nasa.gov/library/iadc-space-debris-guidelines-revision-2.pdf
  4. Visagie L, Lappas V, Erb S, Drag sails for space debris mitigation, Acta Astronaut. 109, 65-75 (2015). https://doi.org/10.1016/j.actaastro.2014.12.013
  5. Yoshida K, Achievements in space robotics, IEEE Robot. Autom. Mag. 16, 20-28 (2009). https://doi.org/10.1109/MRA.2009.934818
  6. Yoshida K, Nakanishi H, Ueno H, Inaba N, Nishimaki T, et al., Dynamics, control and impedance matching for robotic capture of a non-cooperative satellite, Adv. Robot. 18, 175-198 (2004). https://doi.org/10.1163/156855304322758015
  7. Flores-Abad A, Ma O, Pham K, Ulrich S, A review of space robotics technologies for on-orbit servicing, Prog. Aerosp. Sci. 68, 1-26 (2014). https://doi.org/10.1016/j.paerosci.2014.03.002
  8. St-Onge D, Gosselin C, Synthesis and design of a one degree-of-freedom planar deployable mechanism with a large expansion ratio, J. Mech. Robot. 8, 021025 (2016). https://doi.org/10.1115/1.4032101
  9. Choi J, Jung J, Lee D, Kim B, Articulated linkage arms based reliable capture device for janitor satellites, Acta Astronaut. 163, 91-99 (2019). https://doi.org/10.1016/j.actaastro.2019.03.002
  10. Bischof B, Kerstein L, Starke J, Guenther H, Foth WP, ROGER - Robotic geostationary orbit restorer, Proceedings of the 54th International Astronautical Congress of the International Astronautical Federation, Bremen, Germany, 2003.
  11. Golebiowski W, Michalczyk R, Dyrek M, Battista U, Wormnes K, Validated simulator for space debris removal with nets and other flexible tethers applications, Acta Astronaut. 129, 229-240 (2016). https://doi.org/10.1016/j.actaastro.2016.08.037
  12. Medina A, Cercos L, Stefanescu RM, Benvenuto R, Pesce V, et al., Validation results of satellite mock-up capturing experiment using nets, Acta Astronaut. 134, 314-332 (2017). https://doi.org/10.1016/j.actaastro.2017.02.019
  13. Shan M, Guo J, Gill E, Contact dynamics on net capturing of tumbling space debris, J. Guid. Control Dyn. 41, 2063-2072 (2018). https://doi.org/10.2514/1.g003460
  14. Botta EM, Sharf I, Misra AK, Simulation of tether-nets for capture of space debris and small asteroids, Acta Astronaut. 155, 448-461 (2019). https://doi.org/10.1016/j.actaastro.2018.07.046
  15. Heide EJ, Kruijff M, Tethers and debris mitigation, Acta Astronaut. 48, 503-516 (2001). https://doi.org/10.1016/S0094-5765(01)00074-1
  16. Estes RD, Lorenzini EC, Sanmartin J, Pelaez J, Martinez-Sanchez M, et al., Bare tethers for electrodynamic spacecraft propulsion, J. Spacecr. Rockets. 37, 205-211 (2012). https://doi.org/10.2514/2.3567
  17. Takeichi N, Practical operation strategy for deorbit of an electrodynamic tethered system, J. Spacecr. Rockets. 43, 1283-1288 (2012). https://doi.org/10.2514/1.19635
  18. Nishida SI, Kawamoto S, Okawa Y, Terui F, Kitamura S, Space debris removal system using a small satellite, Acta Astronaut. 65, 95-102 (2009). https://doi.org/10.1016/j.actaastro.2009.01.041
  19. Inarrea M, Lanchares V, Pascual AI, Salas JP, Attitude stabilization of electrodynamic tethers in elliptic orbits by time-delay feedback control, Acta Astronaut. 96, 280-295 (2014). https://doi.org/10.1016/j.actaastro.2013.12.011
  20. Forshaw JL, Aglietti GS, Navarathinam N, Kadhem H, Salmon T, et al., RemoveDEBRIS: an in-orbit active debris removal demonstration mission, Acta Astronaut. 127, 448-463 (2016). https://doi.org/10.1016/j.actaastro.2016.06.018
  21. Astroscale, ELSA-d mission update [Internet], viewed 2023 May 3, available from: https://astroscale.com/elsa-d-mission-update/
  22. Park SD, Sung DK, Choi SD, Overview of the KITSAT-1 and KITSAT-2 satellite systems , J. Astron. Space Sci. 13, 1-19 (1996).
  23. KAIST, Satellite Technology Research Center (SaTReC), KITSAT-2 [Internet], viewed 2023 May 5, available from: https://satrec.kaist.ac.kr/03_02.php
  24. Korea Aerospace Industries Association [KAIA], Policy - Status of Domestic Satellite and Launch Vehicle Development (Aerospace Industry, Seoul, Korea, 2010).
  25. Shin GH, Chae JS, Lee SH, Min KW, Sohn JD, et al., Operational concept of the NEXTSat-1 for science mission and space core technology verification, J. Astron. Space Sci. 31, 67-72 (2014). https://doi.org/10.5140/jass.2014.31.1.67
  26. Shin GH, Lee J, Jang TS, Kim DG, Jeong Y, Development and field test of the NEXTSat-2 synthetic aperture radar (SAR) antenna onboard vehicle, J. Space Technol. Appl. 1, 33-40 (2021). https://doi.org/10.52912/jsta.2021.1.1.33
  27. Lee J, Kim SG, Kim SY, Oh SH, Kim SH, et al., Concept of operation for microsatellite constellation system, in Proceedings of the KSAS 2022 Fall Conference, Jeju, Korea, 16-18 Nov 2023.
  28. Vallado DA, Fundamentals of Astrodynamics and Applications (Microcosm Press, Hawthorne, CA, 2013).