Acknowledgement
The author would like to thank the referee for comments and corrections, which have improved this article. This work is supported by the Scientific Research Foundation of Chengdu University of Information Technology (No. KYTZ202015, 2022ZX001).
References
- D. D. Anderson, S. Xing, and M. Zafrullah, Almost discrete valuation domains, Comm. Algebra 49 (2021), no. 1, 173-184. https://doi.org/10.1080/00927872.2020.1797069
- S. Bazzoni, Divisorial domains, Forum Math. 12 (2000), no. 4, 397-419. https://doi.org/10.1515/form.2000.011
- D. Bennis, Rings over which the class of Gorenstein flat modules is closed under extensions, Comm. Algebra 37 (2009), no. 3, 855-868. https://doi.org/10.1080/00927870802271862
- D. Bennis, A note on Gorenstein global dimension of pullback rings, Int. Electron. J. Algebra 8 (2010), 30-44.
- D. Bennis and N. Mahdou, Global Gorenstein dimensions, Proc. Amer. Math. Soc. 138 (2010), no. 2, 461-465. https://doi.org/10.1090/S0002-9939-09-10099-0
- F. Couchot, Localization of injective modules over valuation rings, Proc. Amer. Math. Soc. 134 (2006), no. 4, 1013-1017. https://doi.org/10.1090/S0002-9939-05-08350-4
- E. C. Dade, Localization of injective modules, J. Algebra 69 (1981), no. 2, 416-425. https://doi.org/10.1016/0021-8693(81)90213-1
- N. Ding and J. Chen, The flat dimensions of injective modules, Manuscripta Math. 78 (1993), no. 2, 165-177. https://doi.org/10.1007/BF02599307
- N. Ding and J. Chen, Coherent rings with finite self-F P-injective dimension, Comm. Algebra 24 (1996), no. 9, 2963-2980. https://doi.org/10.1080/00927879608825724
- E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611-633. https://doi.org/10.1007/BF02572634
- E. E. Enochs, O. M. G. Jenda, and B. Torrecillas, Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), no. 1, 1-9.
- M. Fontana, E. Houston, and T. Lucas, Factoring ideals in integral domains, Lecture Notes of the Unione Matematica Italiana, 14, Springer, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-31712-5
- X. Fu and N. Ding, On strongly copure flat modules and copure flat dimensions, Comm. Algebra 38 (2010), no. 12, 4531-4544. https://doi.org/10.1080/00927870903428262
- X. Fu, H. Zhu, and N. Ding, On copure projective modules and copure projective dimensions, Comm. Algebra 40 (2012), no. 1, 343-359. https://doi.org/10.1080/00927872.2010.531337
- S. Gabelli and E. Houston, Coherentlike conditions in pullbacks, Michigan Math. J. 44 (1997), no. 1, 99-123. https://doi.org/10.1307/mmj/1029005623
- S. Gabelli and E. Houston, Ideal theory in pullbacks, in Non-Noetherian commutative ring theory, 199-227, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000.
- Z. Gao and F. Wang, All Gorenstein hereditary rings are coherent, J. Algebra Appl. 13 (2014), no. 4, 1350140, 5 pp. https://doi.org/10.1142/S0219498813501405
- W. Heinzer, Integral domains in which each non-zero ideal is divisorial, Mathematika 15 (1968), 164-170. https://doi.org/10.1112/S0025579300002527
- H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167-193. https://doi.org/10.1016/j.jpaa.2003.11.007
- K. Hu, J. W. Lim, and D. C. Zhou, Flat dimensions of injective modules over domains, Bull. Korean Math. Soc. 57 (2020), no. 4, 1075-1081. https://doi.org/10.4134/BKMS.b190757
- K. Hu and F. Wang, Some results on Gorenstein Dedekind domains and their factor rings, Comm. Algebra 41 (2013), no. 1, 284-293. https://doi.org/10.1080/00927872.2011.629268
- K. Hu, F. Wang, and L. Xu, A note on Gorenstein Pruffer domains, Bull. Korean Math. Soc. 53 (2016), no. 5, 1447-1455. https://doi.org/10.4134/BKMS.b150760
- N. Mahdou and M. Tamekkante, On (strongly) Gorenstein (semi) hereditary rings, Arab. J. Sci. Eng. 36 (2011), no. 3, 431-440. https://doi.org/10.1007/s13369-011-0047-7
- N. Mahdou and M. Tamekkante, On (weak) Gorenstein global dimensions, Acta Math. Univ. Comenian. (N.S.) 82 (2013), no. 2, 285-296.
- N. Mahdou, M. Tamekkante, and S. Yassemi, On (strongly) Gorenstein von Neumann regular rings, Comm. Algebra 39 (2011), no. 9, 3242-3252. https://doi.org/10.1080/00927872.2010.501773
- E. Matlis, 1-dimensional Cohen-Macaulay rings, Lecture Notes in Mathematics, Vol. 327, Springer-Verlag, Berlin, 1973.
- A. Mimouni, TW-domains and strong Mori domains, J. Pure Appl. Algebra 177 (2003), no. 1, 79-93. https://doi.org/10.1016/S0022-4049(02)00171-8
- A. Mimouni, Integral domains in which each ideal is a W-ideal, Comm. Algebra 33 (2005), no. 5, 1345-1355. https://doi.org/10.1081/AGB-200058369
- M. Nagata, Local Rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York, 1962.
- L. Qiao and F. Wang, A Gorenstein analogue of a result of Bertin, J. Algebra Appl. 14 (2015), no. 2, 1550019, 13 pp. https://doi.org/10.1142/S021949881550019X
- B. Stenstrom, Coherent rings and F P-injective modules, J. London Math. Soc. (2) 2 (1970), 323-329. https://doi.org/10.1112/jlms/s2-2.2.323
- F. Wang and H. Kim, Foundations of commutative rings and their modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
- S. Xing, Some examples in Gorenstein multiplicative ideal theory, Comm. Algebra 50 (2022), no. 8, 3188-3200. https://doi.org/10.1080/00927872.2022.2028163
- S. Xing and H. Kim, Generalized coherent domains of self-weak injective dimension at most one, Comm. Algebra 47 (2019), no. 5, 1908-1916. https://doi.org/10.1080/00927872.2018.1524006
- T. Xiong, Rings of copure projective dimension one, J. Korean Math. Soc. 54 (2017), no. 2, 427-440. https://doi.org/10.4134/JKMS.j160014
- M. Zafrullah, The v-operation and intersections of quotient rings of integral domains, Comm. Algebra 13 (1985), no. 8, 1699-1712. https://doi.org/10.1080/00927878508823247