DOI QR코드

DOI QR Code

COPURE PROJECTIVE MODULES OVER FGV-DOMAINS AND GORENSTEIN PRÜFER DOMAINS

  • Shiqi Xing (College of Applied Mathematics Chengdu University of Information Technology)
  • Received : 2022.06.21
  • Accepted : 2022.10.28
  • Published : 2023.07.31

Abstract

In this paper, we prove that a domain R is an FGV-domain if every finitely generated torsion-free R-module is strongly copure projective, and a coherent domain is an FGV-domain if and only if every finitely generated torsion-free R-module is strongly copure projective. To do this, we characterize G-Prüfer domains by G-flat modules, and we prove that a domain is G-Prüfer if and only if every submodule of a projective module is G-flat. Also, we study the D + M construction of G-Prüfer domains. It is seen that there exists a non-integrally closed G-Prüfer domain that is neither Noetherian nor divisorial.

Keywords

Acknowledgement

The author would like to thank the referee for comments and corrections, which have improved this article. This work is supported by the Scientific Research Foundation of Chengdu University of Information Technology (No. KYTZ202015, 2022ZX001).

References

  1. D. D. Anderson, S. Xing, and M. Zafrullah, Almost discrete valuation domains, Comm. Algebra 49 (2021), no. 1, 173-184. https://doi.org/10.1080/00927872.2020.1797069
  2. S. Bazzoni, Divisorial domains, Forum Math. 12 (2000), no. 4, 397-419. https://doi.org/10.1515/form.2000.011
  3. D. Bennis, Rings over which the class of Gorenstein flat modules is closed under extensions, Comm. Algebra 37 (2009), no. 3, 855-868. https://doi.org/10.1080/00927870802271862
  4. D. Bennis, A note on Gorenstein global dimension of pullback rings, Int. Electron. J. Algebra 8 (2010), 30-44.
  5. D. Bennis and N. Mahdou, Global Gorenstein dimensions, Proc. Amer. Math. Soc. 138 (2010), no. 2, 461-465. https://doi.org/10.1090/S0002-9939-09-10099-0
  6. F. Couchot, Localization of injective modules over valuation rings, Proc. Amer. Math. Soc. 134 (2006), no. 4, 1013-1017. https://doi.org/10.1090/S0002-9939-05-08350-4
  7. E. C. Dade, Localization of injective modules, J. Algebra 69 (1981), no. 2, 416-425. https://doi.org/10.1016/0021-8693(81)90213-1
  8. N. Ding and J. Chen, The flat dimensions of injective modules, Manuscripta Math. 78 (1993), no. 2, 165-177. https://doi.org/10.1007/BF02599307
  9. N. Ding and J. Chen, Coherent rings with finite self-F P-injective dimension, Comm. Algebra 24 (1996), no. 9, 2963-2980. https://doi.org/10.1080/00927879608825724
  10. E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611-633. https://doi.org/10.1007/BF02572634
  11. E. E. Enochs, O. M. G. Jenda, and B. Torrecillas, Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), no. 1, 1-9.
  12. M. Fontana, E. Houston, and T. Lucas, Factoring ideals in integral domains, Lecture Notes of the Unione Matematica Italiana, 14, Springer, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-31712-5
  13. X. Fu and N. Ding, On strongly copure flat modules and copure flat dimensions, Comm. Algebra 38 (2010), no. 12, 4531-4544. https://doi.org/10.1080/00927870903428262
  14. X. Fu, H. Zhu, and N. Ding, On copure projective modules and copure projective dimensions, Comm. Algebra 40 (2012), no. 1, 343-359. https://doi.org/10.1080/00927872.2010.531337
  15. S. Gabelli and E. Houston, Coherentlike conditions in pullbacks, Michigan Math. J. 44 (1997), no. 1, 99-123. https://doi.org/10.1307/mmj/1029005623
  16. S. Gabelli and E. Houston, Ideal theory in pullbacks, in Non-Noetherian commutative ring theory, 199-227, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000.
  17. Z. Gao and F. Wang, All Gorenstein hereditary rings are coherent, J. Algebra Appl. 13 (2014), no. 4, 1350140, 5 pp. https://doi.org/10.1142/S0219498813501405
  18. W. Heinzer, Integral domains in which each non-zero ideal is divisorial, Mathematika 15 (1968), 164-170. https://doi.org/10.1112/S0025579300002527
  19. H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167-193. https://doi.org/10.1016/j.jpaa.2003.11.007
  20. K. Hu, J. W. Lim, and D. C. Zhou, Flat dimensions of injective modules over domains, Bull. Korean Math. Soc. 57 (2020), no. 4, 1075-1081. https://doi.org/10.4134/BKMS.b190757
  21. K. Hu and F. Wang, Some results on Gorenstein Dedekind domains and their factor rings, Comm. Algebra 41 (2013), no. 1, 284-293. https://doi.org/10.1080/00927872.2011.629268
  22. K. Hu, F. Wang, and L. Xu, A note on Gorenstein Pruffer domains, Bull. Korean Math. Soc. 53 (2016), no. 5, 1447-1455. https://doi.org/10.4134/BKMS.b150760
  23. N. Mahdou and M. Tamekkante, On (strongly) Gorenstein (semi) hereditary rings, Arab. J. Sci. Eng. 36 (2011), no. 3, 431-440. https://doi.org/10.1007/s13369-011-0047-7
  24. N. Mahdou and M. Tamekkante, On (weak) Gorenstein global dimensions, Acta Math. Univ. Comenian. (N.S.) 82 (2013), no. 2, 285-296.
  25. N. Mahdou, M. Tamekkante, and S. Yassemi, On (strongly) Gorenstein von Neumann regular rings, Comm. Algebra 39 (2011), no. 9, 3242-3252. https://doi.org/10.1080/00927872.2010.501773
  26. E. Matlis, 1-dimensional Cohen-Macaulay rings, Lecture Notes in Mathematics, Vol. 327, Springer-Verlag, Berlin, 1973.
  27. A. Mimouni, TW-domains and strong Mori domains, J. Pure Appl. Algebra 177 (2003), no. 1, 79-93. https://doi.org/10.1016/S0022-4049(02)00171-8
  28. A. Mimouni, Integral domains in which each ideal is a W-ideal, Comm. Algebra 33 (2005), no. 5, 1345-1355. https://doi.org/10.1081/AGB-200058369
  29. M. Nagata, Local Rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York, 1962.
  30. L. Qiao and F. Wang, A Gorenstein analogue of a result of Bertin, J. Algebra Appl. 14 (2015), no. 2, 1550019, 13 pp. https://doi.org/10.1142/S021949881550019X
  31. B. Stenstrom, Coherent rings and F P-injective modules, J. London Math. Soc. (2) 2 (1970), 323-329. https://doi.org/10.1112/jlms/s2-2.2.323
  32. F. Wang and H. Kim, Foundations of commutative rings and their modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
  33. S. Xing, Some examples in Gorenstein multiplicative ideal theory, Comm. Algebra 50 (2022), no. 8, 3188-3200. https://doi.org/10.1080/00927872.2022.2028163
  34. S. Xing and H. Kim, Generalized coherent domains of self-weak injective dimension at most one, Comm. Algebra 47 (2019), no. 5, 1908-1916. https://doi.org/10.1080/00927872.2018.1524006
  35. T. Xiong, Rings of copure projective dimension one, J. Korean Math. Soc. 54 (2017), no. 2, 427-440. https://doi.org/10.4134/JKMS.j160014
  36. M. Zafrullah, The v-operation and intersections of quotient rings of integral domains, Comm. Algebra 13 (1985), no. 8, 1699-1712. https://doi.org/10.1080/00927878508823247