DOI QR코드

DOI QR Code

ON PAIR MEAN CORDIAL GRAPHS

  • R. PONRAJ (Department of Mathematics, Sri Paramakalyani College) ;
  • S. PRABHU (Department of Mathematics, Sri Paramakalyani College)
  • Received : 2023.03.12
  • Accepted : 2023.05.25
  • Published : 2023.07.30

Abstract

Let a graph G = (V, E) be a (p, q) graph. Define $${\rho}=\{\array{{\frac{p}{2}} & \;\;p\text{ is even} \\ {\frac{p-1}{2}} & \;\;p\text{ is odd,}$$ and M = {±1, ±2, … ± ρ} called the set of labels. Consider a mapping λ : V → M by assigning different labels in M to the different elements of V when p is even and different labels in M to p - 1 elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for each edge uv of G, there exists a labeling ${\frac{{\lambda}(u)+{\lambda}(v)}{2}}$ if λ(u) + λ(v) is even and ${\frac{{\lambda}(u)+{\lambda}(v)+1}{2}}$ if λ(u) + λ(v) is odd such that ${\mid}{\bar{{\mathbb{S}}}}_{\lambda}{_1}-{\bar{{\mathbb{S}}}}_{{\lambda}^c_1}{\mid}{\leq}1$ where ${\bar{{\mathbb{S}}}}_{\lambda}{_1}$ and ${\bar{{\mathbb{S}}}}_{{\lambda}^c_1}$ respectively denote the number of edges labeled with 1 and the number of edges not labeled with 1. A graph G for which there exists a pair mean cordial labeling is called a pair mean cordial graph. In this paper, we investigate the pair mean cordial labeling behavior of few graphs including the closed helm graph, web graph, jewel graph, sunflower graph, flower graph, tadpole graph, dumbbell graph, umbrella graph, butterfly graph, jelly fish, triangular book graph, quadrilateral book graph.

Keywords

Acknowledgement

The authors thank the Referee for their valuable suggestions towards the improvement of the paper.

References

  1. J. Baskar Babujee and L. Shobana, Prime cordial labeling of graphs, Internat. Review on Pure and Appl. Math. 5 (2009), 277-282. 
  2. I. Cahit, Cordial graphs: a weaker versionof graceful and harmonious graphs, Ars comb. 23 (1987), 201-207. 
  3. I. Cahit, Recent results and open problems on cordial graphs, Contemporary Methods in Graph Theory, R. Bodendiek(ed.), Wissenschaftsverlag Mannheim, 1990, 209-230. 
  4. J.A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics 24 (2021). 
  5. M. Ghebleh and R. Khoeilar, A note on H-cordial graphs, Bull. Inst. Combin. Appl. 31 (2001), 60-68. 
  6. F. Harary, Graph theory, Addison Wesely, Reading Mass., 1972. 
  7. H.Y. Lee, H.M. Lee and G.J. Chang, Cordial labeling of graphs, Chinese J. Math. 20 (1992), 263-273. 
  8. R. Ponraj, A. Gayathri and S. Somasundaram, Pair difference cordial labeling of graphs, J. Math. Compt. Sci. 11 (2021), 2551-2567. 
  9. R. Ponraj and S. Prabhu, Pair mean cordial labeling of graphs, Journal of Algorithms and Computation 54 (2022), 1-10. 
  10. R. Ponraj and S. Prabhu, Pair Mean Cordial labeling of some corona graphs, Journal of Indian Acad. Math. 44 (2022), 45-54. 
  11. R. Ponraj and S. Prabhu, Pair mean cordiality of some snake graphs, Global Journal of Pure and Applied Mathematics 18 (2022), 283-295. 
  12. R. Ponraj and S. Prabhu, Pair mean cordial labeling of graphs obtained from path and cycle, J. Appl. & Pure Math. 4 (2022), 85-97. 
  13. O. Pechenik and J. Wise, Generalized graph cordiality, Discuss Math. Graph Th. 32 (2012), 557-567.  https://doi.org/10.7151/dmgt.1626
  14. U.M. Prajapati and R.M. Gajjar, Cardiality in the context of duplication flower related graphs, Internat. J. Math. Soft Comput. 7 (2017), 90-101. 
  15. A. Rosa, On certain valuations of the vertices of a graph, Thoery of Graphs (Intl.Symp. Rome 1966), Gordon and Breach, Dunod, Paris, 1967, 349-355. 
  16. S. Somasundaram and R. Ponraj, Mean labeling of graphs, National Academy Science Letter 26 (2003), 210-213. 
  17. M. Seoud and M. Aboshady, Further results on parity combination cordial labeling, J. Egyptian Math. Soc. 28 (2020), 25. 
  18. M.A. Seoud and A.E.I. Abdel Maqsoud, On cordial and balanced labeling of graphs, J. Egyptian Math. Soc. 7 (1999), 127-135. 
  19. S.C. Shee and Y.S. Ho., The cordiality of one point union of n copies of a graph, Discrete Math. 28 (1991), 73-80.  https://doi.org/10.1016/0012-365X(91)90072-A
  20. S.C. Shee and Y.S. Ho., The cordiality of the path union of n copies of a graph, Discrete Math. 151 (1996), 221-229.  https://doi.org/10.1016/0012-365X(94)00099-5
  21. M. Tuczynski, P. Wenus and K. Wesek, On cordial labeling of hypertrees, Discrete Combin. Math. Combin. Comput. 55 (2013), 109-121. 
  22. A. Villar, On the product cordial labelling for some crown graphs, U. South eastern Philippines, Math. Stat. Depart. Davao City, Philippines, 2013, 19-86. 
  23. M.Z. Youssef, On k-cordial labeling, Australas J. Combin. 43 (2009), 31-37.