DOI QR코드

DOI QR Code

Low Temperature Sintering of (Bi1/2Na1/2)TiO3-SrTiO3 Ceramics and Their Ferroelectric and Piezoelectric Properties

BNT-ST 세라믹스의 저온 소결과 강유전 및 압전 특성

  • Hyunhee Kwon (Department of Materials Science & Engineering, Hoseo Unversity) ;
  • Ga Hui Hwang (Department of Electronic Materials Engineering, Hoseo Unversity) ;
  • Chae Il Cheon (Department of Materials Science & Engineering, Hoseo Unversity) ;
  • Ki-Woong Chae (Department of Materials Science & Engineering, Hoseo Unversity)
  • 권현희 (호서대학교 신소재공학과) ;
  • 황가희 (호서대학교 전자재료공학과) ;
  • 천채일 (호서대학교 신소재공학과) ;
  • 채기웅 (호서대학교 신소재공학과)
  • Received : 2023.07.17
  • Accepted : 2023.07.28
  • Published : 2023.07.31

Abstract

0.75(Bi1/2Na1/2)TiO3-0.25SrTiO3 (BNT-25ST) ceramics with high densities were successfully prepared at a sintering temperature of 1,000℃ by adding a mixture of 1 mol% CuO and 0.5 mol% Na2CO3 or 0.5 mol% CuO and 0.25 mol% Na2CO3. Double polarization-electric field (P-E) hysteresis curves and sprout-shaped bipolar strain-electric field (S-E) hysteresis curves with small negative strains were observed in the pristine and CuO-added BNT-25ST ceramics whereas the Na2CO3-added sample showed similar P-E and S-E curves to a typical ferroelectric. The pristine BNT-25ST ceramics showed an extremely large strain and a large-signal piezoelectric strain constant (d33*): 0.287 % at 80 kV/cm and 850 pm/V at 20 kV/cm. Similar values, 0.248 % at 80 kV/cm and 655 pm/V at 20 kV/cm, were obtained in the CuO-added sample. However, the pristine and CuO-added samples showed large hysteresis in unipolar S-E curves at an electric field of less than 20 kV/cm. The Na2CO3-added sample showed smaller values of the strain and d33* but displayed a linear change and small hysteresis in the unipolar S-E curve. The co-added sample with CuO and Na2CO3 displayed intermediate P-E and S-E hysteresis curves.

Keywords

Acknowledgement

이 논문은 2020년도 호서대학교의 재원으로 학술연구비 지원을 받아 수행된 연구임(20200844).

References

  1. H. Wei, H. Wang, Y. Xia, D. Cui, Y. Shi, M. Dong, C. Liu, T. Ding, J. Zhang, Y. Ma, N. Wang, Z. Wang, Y. Sun, R. Wei, and Z. Guo, "An overview of lead-free piezoelectric materials and devices", J. Mater. Chem. C, Vol. 6, No. 46, pp. 12446-12467, 2018. https://doi.org/10.1039/C8TC04515A
  2. J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimurac, and D. Damjanovic, "Transferring lead-free piezoelectric ceramics into application", J. Eur. Ceram. Soc., Vol. 35, No. 6, pp. 1659-1681, 2015. https://doi.org/10.1016/j.jeurceramsoc.2014.12.013
  3. H. Wu, Y. Zhang, J. Wu, J. Wang, and S. J. Pennycook, "Microstructural Origins of High Piezoelectric Performance: A Pathway to Practical Lead-Free Materials", Adv. Funct. Mater., Vol. 29, No. 33, p. 1902911, 2019.
  4. X. Gao, J. Yang, J. Wu, X. Xin, Z. Li, X. Yuan, X. Shen, and S. Dong, "Piezoelectric Actuators and Motors: Materials, Designs, and Applications", Adv. Mater. Technol., Vol. 5, No. 1, p. 1900716, 2020.
  5. G.-J. Lee, H.-P. Kim, S.-G. Lee, H.-Y. Lee, and W. Jo, "Depolarization Mechanism of Alternating-current-poled Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals Measured using in-situ thermally Stimulated Depolarization Current", J. Sens. Sci. Technol., Vol. 29, No. 1, pp. 59-62, 2020. https://doi.org/10.5369/JSST.2019.29.1.59
  6. M. Acosta, W. Jo, and J. Rodel, "Temperature- and Frequency-Dependent Properties of the 0.75Bi1/2Na1/2TiO3-0.25SrTiO3 Lead-Free Incipient Piezoceramic", J. Am. Ceram. Soc., Vol. 97, No. 6, pp. 1937-1943, 2014. https://doi.org/10.1111/jace.12884
  7. W. Jo, "Lead-free Incipient Piezoceramics for Actuator Applications", Phys. High Technol., Vol. 22, No. 1-2, pp. 8-13, 2013. https://doi.org/10.3938/PhiT.22.002
  8. M.-H. Zhang, C. Shen, C. Zhao, M. Dai, F.-Z. Yao, B.Wu , J. Ma, H. Nan, D. Wang, Q. Yuan, L. L. da Silva, L. Fulanovic, A. Schokel, P. Liu, H. Zhang, J.-F. Li, N. Zhang, K. Wang, J. Rodel, and M. Hinterstein, "Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO3-based piezoceramics", Nat. Commun., Vol. 13, No. 1, p. 3434, 2022.
  9. W. Feng, B. Luo, S. Bian, E. Tian, Z. Zhang, A.Kursumovic, J. L. MacManus-Driscoll, X. Wang, and L. Li, "Heterostrain-enabled ultrahigh electrostrain in lead-free piezoelectric", Nat. Commun., Vol. 13, No. 1, p. 5086, 2022.
  10. H. Wu, Y. Zhang, J. Wu, J. Wang, and S. J. Pennycook, "Microstructural Origins of High Piezoelectric Performance: A Pathway to Practical Lead-Free Materials", Adv. Funct. Mater., Vol. 29, No. 33, p. 1902911, 2019.
  11. J. Wu, "Perovskite lead-free piezoelectric ceramics", J. Appl. Phys., Vol. 127, No. 19, p. 190901, 2020.
  12. T. A. Duong, H. T. K. Nguyen, S. S. Lee, C. W. Ahn, B. W. Kim, J. S. Lee, and H. S. Han, "Enhancement of electromechanical properties in lead‒free (1-x)K0.5Na0.5O3-xBaZrO3 piezoceramics", J. Sens. Sci. Technol., Vol. 30, No. 6, pp. 408-414, 2021. https://doi.org/10.46670/JSST.2021.30.6.408
  13. F. Li, S. Zhang, D. Damjanovic, L. Q. Chen, and T. R. Shrout, "Local Structural Heterogeneity and Electromechanical Responses of Ferroelectrics: Learning from Relaxor Ferroelectrics", Adv. Funct. Mater., Vol. 28, No. 37, p. 1801504, 2018.
  14. Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, and T. Takenaka, "Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3-SrTiO3 ferroelectric ceramics", Appl. Phys. Lett., Vol. 92, No. 26, p. 262904, 2008.
  15. S. Jo, C. H. Hong, D. S. Kim, H. W. Kang, C. W. Ahn, H. G. Lee, S. Nahm, W. Jo, and S. H. Han, "Phase transition behavior and mechanical properties of(1-x)(Bi1/2Na1/2)TiO3-xSrTiO3 lead-free piezoelectric ceramics", Sens. Actuator A Phys., Vol. 258, pp. 201-207, 2017. https://doi.org/10.1016/j.sna.2017.03.008
  16. T. A. Duong, H. S. Han, Y. H. Hong, Y. S. Park, H. T. K. Nguyen, T. H. Dinh, and J. S. Lee, "Dielectric and piezoelectric properties of Bi1/2Na1/2TiO3-xSrTiO3 lead-free ceramics," J. Electroceram., Vol. 41, pp. 73-79, 2018. https://doi.org/10.1007/s10832-018-0161-y
  17. D. S. Kim, B. C. Kim, S. H. Han, H. W. Kang, J. S. Kim, and C. I. Cheon, "Direct and indirect measurements of the electro-caloric effect in (Bi,Na)TiO3-SrTiO3 ceramics", J. Appl. Phys., Vol. 126, No. 23, p. 234101, 2019.
  18. M. Saleem, I. S. Kim, M. S. Kim, B. K. Koo, and S. J. Jeong, "Large signal electrical property of CuO-doped of a Bi1/2Na1/2TiO3-SrTiO3", J. Electroceram., Vol. 40, pp. 88-98, 2018. https://doi.org/10.1007/s10832-017-0106-x
  19. C. H. Lee, H. S. Han, S. H. Kim, T. H. Dinh, C. W. Ahn, and J. S. Lee, "Low temperature sintering of lead-free (Bi1/2Na1/2)TiO3-SrTiO3-BiFeO3 piezoelectric ceramics by adding excess CuO", J. Electroceram., Vol. 41, pp. 43-49, 2018. https://doi.org/10.1007/s10832-018-0151-0
  20. C. H. Lee, H. S. Han, T. A. Duong, T. H. Dinh, C. W. Ahn, and J. S. Lee, "Stabilization of the relaxor phase by adding CuO in lead-free (Bi1/2Na1/2)TiO3‒SrTiO3‒BiFeO3 ceramics", Ceram. Int., Vol. 43, No. 14, pp. 11071-11077, 2017. https://doi.org/10.1016/j.ceramint.2017.05.152
  21. S. S. Lee, Y. S. Park, T. A. Duong, M. A. Devita, H. S. Han, and J. S. Lee, "Low Temperature Sintering of Lead-Free Bi1/2Na1/2TiO3-SrTiO3 Piezoceramics by Li2CO3-B2O3 Addition", J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 35, No. 1, pp. 24-31, 2022. https://doi.org/10.3740/MRSK.2021.31.10.562
  22. Y. H. Hong, H. S. Han, G. H. Jeong, Y. S. Park, T. H. Dinh, C. W. Ahn, and J. S. Lee, "High electromechanical strain properties by the existence of nonergodicity in LiNbO3-modified Bi1/2Na1/2TiO3-SrTiO3 relaxor ceramics", Ceram. Int., Vol. 44, No. 17, pp. 21138-21144, 2018. https://doi.org/10.1016/j.ceramint.2018.08.156
  23. X. Y. Tong, Y. T. Yang, M. W. Song, J. J. Zhou, K. Wang, C. L. Guan, H. Liu, and J. Z. Fang, "Energy-storage properties of low-temperature Co-fired BNT-ST/AgPd multilayer lead-free ceramic capacitors", J. Alloys Compd., Vol. 827, p. 154260, 2020.