• Title/Summary/Keyword: $(Bi_{1/2}Na_{1/2})TiO_3-SrTiO_3$

Search Result 16, Processing Time 0.039 seconds

Piezoelectric Properties of Pb-free Bi(Na,K)$TiO_3-SrTiO_3$ Ceramics with the Amount of $CeO_2$ Addition ($CeO_2$첨가에 따른 무연 Bi(Na,K)$TiO_3-SrTiO_3$ 세라믹스의 압전특성)

  • Lee, Hyun-Seok;Yoo, Ju-Hyun;Park, Chang-Yub;Jeong, Yeong-Ho;Hong, Jae-Il;Im, In-Ho;Yoon, Hyun-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.590-594
    • /
    • 2004
  • In this study, lead-free piezoelectric ceramics were investigated for pressure sensor applications as a function of the amount of $CeO_2$ addition at Bi(Na,K)$TiO_3-SrTiO_3$ system. With increasing the amount of $CeO_2$ addition, the density and dielectric constant increased. Electromechanical coupling factor($k_p$) showed the maximum value(kp, 0.39) at 0.1wt% $CeO_2$ addition and decreased above 0.1wt% $CeO_2$ addition., Density, dielectric constant(${\varepsilon}_r$) increased but mechanical quality factor(Qm), piezoelectric constant(d33) decreased in $CeO_2$ addition, respectively.

  • PDF

Low Temperature Sintering of (Bi1/2Na1/2)TiO3-SrTiO3 Ceramics and Their Ferroelectric and Piezoelectric Properties (BNT-ST 세라믹스의 저온 소결과 강유전 및 압전 특성)

  • Hyunhee Kwon;Ga Hui Hwang;Chae Il Cheon;Ki-Woong Chae
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.238-245
    • /
    • 2023
  • 0.75(Bi1/2Na1/2)TiO3-0.25SrTiO3 (BNT-25ST) ceramics with high densities were successfully prepared at a sintering temperature of 1,000℃ by adding a mixture of 1 mol% CuO and 0.5 mol% Na2CO3 or 0.5 mol% CuO and 0.25 mol% Na2CO3. Double polarization-electric field (P-E) hysteresis curves and sprout-shaped bipolar strain-electric field (S-E) hysteresis curves with small negative strains were observed in the pristine and CuO-added BNT-25ST ceramics whereas the Na2CO3-added sample showed similar P-E and S-E curves to a typical ferroelectric. The pristine BNT-25ST ceramics showed an extremely large strain and a large-signal piezoelectric strain constant (d33*): 0.287 % at 80 kV/cm and 850 pm/V at 20 kV/cm. Similar values, 0.248 % at 80 kV/cm and 655 pm/V at 20 kV/cm, were obtained in the CuO-added sample. However, the pristine and CuO-added samples showed large hysteresis in unipolar S-E curves at an electric field of less than 20 kV/cm. The Na2CO3-added sample showed smaller values of the strain and d33* but displayed a linear change and small hysteresis in the unipolar S-E curve. The co-added sample with CuO and Na2CO3 displayed intermediate P-E and S-E hysteresis curves.

Electrical Properties of pressure sensor using a Pb-free $Bi(Na,K)TiO_3-SrTiO_3$ Ceramics (무연 $Bi(Na,K)TiO_3$계 세라믹을 이용한 압력센서의 전기적 특성)

  • Lee, Hyun-Seok;Yoo, Ju-Hyun;Jeong, Yeong-Ho;Hong, Jae-Il;Chung, Kwang-Hyun;Ryu, Sung-Lim
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.387-391
    • /
    • 2004
  • [ $(Bi_{1/2}Na_{1/2})TiO_3$ ](BNT) is considered to be an excellent candidate for the key material of lead-free piezoelectric ceramic due to properties of strong ferroelectricity with a relatively large remanent polarization $Pr=38{\mu}C/cm^2$, and a large coercive field, Ec=73KV/cm. In this study, electrical properties of pressure sensor using a $0.96Bi_{0.5}(Na_{0.84}K_{0.16})_{0.5}TiO_3+0.04SrTiO_3+0.2wt%La_2O_3$ ceramics are investigated. Resonant frequency of pressure sensor was decreased with increasing pressure. However, its anti-resonant frequency was increased with increasing pressure.

  • PDF

Electrical Properties and Phase Transition Behavior of Lead-Free BaTiO3-Modified Bi1/2Na1/2TiO3-SrTiO3 Piezoelectric Ceramics (BaTiO3 첨가에 따른 Bi1/2Na1/2TiO3-SrTiO3 무연 압전 세라믹스의 전기적 특성 및 상전이 거동 연구)

  • Kang, Yubin;Park, Jae Young;Devita, Mukhllishah Aisyah;Duong, Trang An;Ahn, Chang Won;Kim, Byeong Woo;Han, Hyoung-Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.516-521
    • /
    • 2022
  • We investigated the microstructure, crystal structure, dielectric, and elecromechanical strain properties of lead-free BaTiO3 (BT)-modified (Bi1/2Na1/2)TiO3-SrTiO3 (BNT-ST) piezoelectric ceramics. Samples were prepared by a conventional ceramic processing route. Temperature dependent dielectric properties confirmed that a phase transition from a nonergodic relaxor to an ergodic relaxor was induced when the BT concentration reached 1.5 mol%, interestingly, where the average grain size reached a maximum value of 4.5 ㎛. At the same time, enhanced electromechanical strain (Smax/Emax = 600 pm/V) was obtained. It is suggested that the induced ferroelectric-relaxor phase transition by the BT modification is responsible for the enhancement of electromechanical strain in 1.5 mol% BT-modified BNT-ST ceramics.

Crystal Growth and their photorefractive properties for optical memo (광메모리 단결정의 성장과 그 특성)

  • 유영문
    • Broadcasting and Media Magazine
    • /
    • v.6 no.1
    • /
    • pp.78-87
    • /
    • 2001
  • Seven kinds of most representative photorefractive crystals expected to contribute to the realization of the volume holographic storage were reviewed The growth conditions and problems for highly homogeneous optical qualities of the following crystals depending on the growth methods were discussed;(1) $LiNbO_3$ and $Bi_2SiO_{20}$ by Czochralski method (2) $Bi_{12}TiO_{20}$, $KNbO_3$ and $BaTiO_3$ by top seeded solution growth and (3) $(Sr_{1-x}Ba_{x})Nb_{2}O_{6}$ and $(K_{1-y}Na_y)_{2A-2}(Sr_{1-x}Ba_x)_{2-A}Nb_2O_6$ by Stepanov method, And then the figure of merits for the estimation of phororefractive materials on performances, such as $Q_1$, $Q_2$ and sensitivity, were discussed.

  • PDF

Effects of SrTiO3-Modification on the Dielectric and Electromechanical Strain Properties of Lead-Free Bi1/2Na1/2TiO3-BiAlO3 Piezoceramics (Bi1/2Na1/2TiO3-BiAlO3 무연 압전 세라믹스의 유전 및 전기 기계적 변형 특성에 대한 SrTiO3 첨가 효과)

  • Lee, Sang Sub;Lee, Chang-Heon;Duong, Trang An;Kim, Dong Hyeok;Kim, Byeong Woo;Han, Hyoung-Su;Lee, Jae-Shin
    • Korean Journal of Materials Research
    • /
    • v.31 no.10
    • /
    • pp.562-568
    • /
    • 2021
  • (Bi1/2Na1/2)TiO3 (BNT)-based ceramics are considered promising candidates for actuator application owing to their excellent electromechanical strain properties However, to obtain large strain properties, there remain several issues such as thermal stability and high operating fields. Therefore, this study investigates a reduction of operating field in (0.98-x)Bi1/2Na1/2TiO3-0.02 BiAlO3-xSrTiO3 (BNT-2BA-100xST, x = 0.20, 0.21, 0.22, 0.23, and 0.24) via analyses of the microstructure, crystal structure, dielectric, polarization, ferroelectric and electromechanical strain properties. The average grain size of BNT-${\underline{2}}$BA-100xST ceramics decreases with increasing ST content. Results of polarization and electromechanical strain properties indicate that a ferroelectric to relaxor state transition is induced by ST modification. As a consequence, a large electromechanical strain of 592 pm/V is obtained at a relatively low electric field of 4 kV/mm in 22 mol% ST-modified BNT-2BA ceramics. We believe that the materials synthesized in this study are promising candidates for actuator applications.

Dielectric and Piezoelectric Properties of Pb-free Bi(Na, K)TiO3-SrTiO3 Ceramics with MnO2 Addition (MnO2 첨가에 따른 무연 Bi(Na, K)TiO3-SrTiO3 세라믹스의 유전 및 압전 특성)

  • Lee, Mi-Young;Ryu, Sung-Lim;Yoo, Ju-Hyun;Chung, Kwang-Hyun;Jeong, Yeong-Ho;Hong, Jae-Il;Yoon, Hyun-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1056-1060
    • /
    • 2004
  • In this study, 0.96B $i_{0.5}$($Na_{0.84}$ $K_{0.16}$)$_{0.5}$Ti $O_3$ + 0.04SrTi $O_3$ + 0.3 wt% N $b_2$ $O_{5}$+0.2 wt% L $a_2$ $O_3$ + xwt % Mn $O_2$ were investigated as a function of the amount of Mn $O_2$ addition in order to improve dielectric and piezoelectric properties of Lead-free piezoelectric ceramics. With increasing the amount of Mn $O_2$ addition, the density, electromechanical coupling factor( $k_{p}$), piezoelectric constant( $d_{33}$, $g_{33}$) and curie temperature (Tc) showed the maximum value of 5.7 g/㎤, 38 %, 219 pC/N, 26 mVㆍm/N and 32$0^{\circ}C$ at 0.1 wt% Mn $O_2$ addition, respectively, and mechanical quality factor( $Q_{m}$ ) showed the maximum value of 158 at 0.3 wt% Mn $O_2$ addition.ddition.ion.n.

Piezoelectric Characteristics of Lead-Free 0.74(Bi0.5Na0.5)TiO3-0.26SrTiO3 Ceramics According to Calcination Temperature (무연 0.74(Bi0.5Na0.5)TiO3-0.26SrTiO3 압전 세라믹스의 하소온도 변화에 따른 전기적 특성 변화)

  • Kim, Seong-Hyun;Lee, Sang-Hun;Han, Hyoung-Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.35-39
    • /
    • 2019
  • In this study, we investigated the optimum calcination temperature of lead-free $0.74(Bi_{0.5}Na_{0.5})TiO_3-0.26SrTiO_3$(BNST) piezoelectric ceramics by analyzing the crystal structure, dielectric properties, and electric field-induced strain behavior. BNST ceramics prepared by conventional solid-state reaction methods at various calcination temperatures according to the industrial standard. All samples of BNST ceramics were subsequently sintered at $1,175^{\circ}C$ for 2 h. Crystal structure classification of the ceramics showed a single perovskite phase, with no second phase detectable for the samples calcined at $750^{\circ}C$ or higher. BNST samples calcined at $850^{\circ}C$ exhibited the most optimal values for itsand the common physical parameters of $density=5.518g/cm^3$, ${\varepsilon}=1,871.837$, $tan{\delta}=0.047$, and ${d_{33}}^*=874pm/V$.

Low Temperature Sintering of Lead-Free Bi1/2Na1/2TiO3-SrTiO3 Piezoceramics by Li2CO3-B2O3 Addition (Li2CO3와 B2O3를 첨가한 Bi1/2Na1/2TiO3-SrTiO3 무연 압전 세라믹스의 저온 소성 연구)

  • Lee, Sang Sub;Park, Young-Seok;Duong, Trang An;Devita, Mukhlishah Aisyah;Han, Hyoung-Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • This study investigated microstructures, crystal structures, polarization, dielectric and electromechanical properties of 0.76Bi1/2Na1/2TiO3-0.24SrTiO3 (BNT-24ST)-based piezoceramcs by adding Li2CO3 and B2O3 (LB) as sintering aids for low-temperature sintering. All samples were successfully synthesized using conventional solid-state reaction method and sintered at 950, 1,000, 1,050, 1,100 and 1,175℃ for 2 hours. Without LB, specimens required sintering temperatures over 1,175℃ for sufficient densification, while the addition of 0.10-mol LB decreased the sintering temperatures down to 950℃. The average grain size and dielectric properties of BNT-24ST-10LB ceramics were enhanced with increasing sintering temperature. We found that the low-temperature sintered BNT-24ST piezoceramics by adding LB showed the d33*value of 402 pm/V at 4 kV/mm after sintering at 1,050℃, which was better than that of high-temperature fired specimens sintered at 1,175℃ without LB (242 pm/V). We believe that the results of this study promise a candidate for low-cost multilayer ceramic actuator applications.

Ferroelectric to Relaxor Transition Behavior in Lead-Free Ternary (Bi0.5Na0.5)TiO3-BiFeO3-SrTiO3 Piezoceramics (Bi0.5Na0.5TiO3-BiFeO3-SrTiO3 삼성분계 무연 압전 세라믹스의 강유전체-완화형 강유전체 상전이 거동)

  • Lee, Sang Sub;Lee, Chang-Heon;Duong, Trang An;Nguyen, Hoang Thien Khoi;Han, Hyoung-Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • This study investigated the structural, dielectric, ferroelectric, and strain properties of (0.98-x)Bi1/2Na1/2TiO3-0.02BiFeO3-xSrTiO3 (BNT-BF-100xST, x=0.20, 0.22, 0.24, 0.26, and 0.28). All samples were successfully synthesized using the conventional solid-state reaction method and sintered at 1,175℃ for 2 h. The average grain size of the BNT-BF-100x ceramics decreased with increasing ST content. Furthermore, we observed that the ferroelectric- relaxor transition temperature (TF-R) decreased with increasing ST content, which eventually vanished in the BNT-BF-24ST ceramics. The results indicated that a ferroelectric to relaxor phase transition could be induced by ST modification. Consequently, a large electromechanical strain of 633 pm/V at 4 kV/mm was observed for the BNT-BF-26ST ceramics. These results imply that our materials have the competitive advantage of larger strain under lower operating field conditions compared with other BNT-based lead-free piezoelectric ceramics. We expect that BNT-BF-ST lead-free piezoelectric ceramics are promising candidates as a novel ternary BNT-based system and can find potential applications in actuators.