DOI QR코드

DOI QR Code

Optimal Capacity Determination of Hydrogen Fuel Cell Technology Based Trigeneration System And Prediction of Semi-closed Greenhouse Dynamic Energy Loads Using Building Energy Simulation

건물 에너지 시뮬레이션을 이용한 반밀폐형 온실의 동적 에너지 부하 예측 및 수소연료전지 3중 열병합 시스템 적정 용량 산정

  • Seung-Hun Lee (Department of Agriculture Engineering, Kongju National University) ;
  • Rack-Woo Kim (Department of SmartFarm Engineering, Kongju National University) ;
  • Chan-Min Kim (Department of SmartFarm Engineering, Kongju National University) ;
  • Hee-Woong Seok (Department of SmartFarm Engineering, Kongju National University) ;
  • Sungwook Yoon (Division of Agricultural Engineering, National Institute of Agricultural Sciences, RDA)
  • 이승헌 (국립공주대학교 농공학과 ) ;
  • 김락우 (국립공주대학교 스마트팜공학과) ;
  • 김찬민 (국립공주대학교 스마트팜공학과) ;
  • 석희웅 (국립공주대학교 스마트팜공학과) ;
  • 윤성욱 (농촌진흥청 국립농업과학원 농업공학부 )
  • Received : 2023.04.06
  • Accepted : 2023.06.01
  • Published : 2023.07.31

Abstract

Hydrogen has gained attention as an environmentally friendly energy source among various renewable options, however, its application in agriculture remains limited. This study aims to apply the hydrogen fuel cell triple heat-combining system, originally not designed for greenhouses, to greenhouses in order to save energy and reduce greenhouse gas emissions. This system can produce heating, cooling, and electricity from hydrogen while recovering waste heat. To implement a hydrogen fuel cell triple heat-combining system in a greenhouse, it is crucial to evaluate the greenhouse's heating and cooling load. Accurate analysis of these loads requires considering factors such as greenhouse configuration, existing heating and cooling systems, and specific crop types being cultivated. Consequently, this study aimed to estimate the cooling and heating load using building energy simulation (BES). This study collected and analyzed meteorological data from 2012 to 2021 for semi-enclosed greenhouses cultivating tomatoes in Jeonju City. The covering material and framework were modeled based on the greenhouse design, and crop energy and soil energy were taken into account. To verify the effectiveness of the building energy simulation, we conducted analyses with and without crops, as well as static and dynamic energy analyses. Furthermore, we calculated the average maximum heating capacity of 449,578 kJ·h-1 and the average cooling capacity of 431,187 kJ·h-1 from the monthly maximum cooling and heating load analyses.

수소는 다양한 신재생에너지 중 환경친화적인 에너지로 각광받고 있지만 농업에 적용된 사례는 드물다. 본 연구는 수소연료전지 삼중 열병합 시스템을 온실에 적용하여 에너지를 절약하고 온실가스를 줄이고자 한다. 이 시스템은 배출된 열을 회수하면서 수소로부터 난방, 냉각 및 전기를 생산할 수 있다. 수소 연료 전지 삼중 열 병합 시스템을 온실에 적용하기 위해서는 온실의 냉난방 부하 분석이 필요하다. 이를 위해서는 온실의 형태, 냉난방 시스템, 작물 등을 고려해야 한다. 따라서 본 연구에서는 건물 에너지 시뮬레이션(BES)을 활용하여 냉난방 부하를 추정하고자 한다. 전주지역의 토마토를 재배하는 반밀폐형 온실을 대상으로 2012년부터 2021년까지의 기상데이터를 수집하여 분석했다. 온실 설계도를 참고하여 피복재와 골조를 모델화하여 작물 에너지와 토양 에너지 교환을 실시했다. 건물 에너지 시뮬레이션의 유효성을 검증하기 위해 작물의 유무에 의한 분석, 정적 에너지 및 동적 에너지 분석을 실시했다. 또한 월별 최대 냉난방 부하 분석에 의해 평균 최대 난방 용량 449,578kJ·h-1, 냉방 용량 431,187kJ·h-1이 산정되었다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구사업(세부과제번호: PJ0162572023)의 지원에 의해 이루어진 것임.

References

  1. Abdel-Ghany A.M., and T. Kozai 2006, Dynamic modeling of the environment in a naturally ventilated, fog-cooled greenhouse. Renew Energy 31:1521-1539. doi:10.1016/j.renene.2005.07.013
  2. Banakar A., M. Montazeri, B. Ghobadian, H. Pasdarshahri, and F. Kamrani 2021, Energy analysis and assessing heating and cooling demands of closed greenhouse in Iran. Therm Sci Eng Prog 25:101042. doi:10.1016/j.tsep.2021.101042
  3. Carlini M., T. Honorati, and S. Castellucci 2012, Photovoltaic greenhouses: Comparison of optical and thermal behaviour for energy savings. Math Probl Eng 2012:743764. doi:10.1155/2012/743764
  4. Choudhury B.J., S.B. Idso, and R.J. Reginato 1987, Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation. Agric For Meteorol 39:283-297. doi:10.1016/0168-1923(87)90021-9
  5. Clothier B.E., K.L. Clawson, P.J. Pinter Jr., M.S. Moran, R.J. Reginato, and R.D. Jackson 1986, Estimation of soil heat flux net radiation during the growth of alfalfa. Agric For Meteorol 37:319-329. https://doi.org/10.1016/0168-1923(86)90069-9
  6. Coakley D., P. Raftery, and M. Keane 2014, A review of methods to match building energy simulation models to measured data. Renew Sustain Energy Rev 37:123-141. doi:10.1016/j.rser.2014.05.007
  7. Decano-Valentin C., I.B. Lee, U.H. Yeo, S.Y. Lee, J.G. Kim, S.J. Park, Y.B. Choi, J.H. Cho, and H.H. Jeong 2021, Integrated building energy simulation-life cycle assessment (BES-LCA) approach for environmental assessment of agricultural building: A review and application to greenhouse heating systems. Agronomy 11:1230. doi:10.3390/agronomy11061230
  8. Fynn R.P., A. Al-shooshan, T.H. Short, and R.W. McMahon 1993, Evapotranspiration measurement and modeling for a potted chrysanthemum crop. Am Soc Agric Eng 36:1907-1913. doi:10.13031/2013.28541
  9. Jo J.H., S.S. Yu, S.M. Lee, and S.G. Kang 2018, Modeling and effectiveness verification of greenhouse dynamic systems including model of plant growth. Proc Korean Soc Mech Eng Spring and Autumn Conf, pp 871-875. (in Korean)
  10. Joudi K.A., and A.A. Farhan 2015, A dynamic model and an experimental study for the internal air and soil temperatures in an innovative greenhouse. Energy Convers Manag 91:76-82. doi:10.1016/j.enconman.2014.11.052
  11. Korea Energy Economics Institute (KEEI) 2021, International renewable energy policy changes and market analysis. KEEI, Ulsan, Korea. (in Korean)
  12. KOSIS 2022, Agriculture area survey. Available via https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1EB001 &conn_path=I3. Accessed 20 Nov 2022. (in Korean)
  13. Lee S.B., I.B. Lee, S.W. Hong, I.H. Seo, B.P. Jessie, K.S. Kwon, T.H. Ha, and C.P. Han 2012, Prediction of greenhouse energy loads using building energy simulation (BES). J Korean Soc Agric Eng 54:113-124. (in Korean) doi:10.5389/KSAE.2012.54.3.113
  14. Lee S.N., S.J. Park, I.B. Lee, T.H. Ha, K.S Kwon, R.W. Kim, U.H. Yeo, and S.Y. Lee 2016, Design of energy model of greenhouse including plant and estimation of heating and cooling loads for a multi-span plastic-film greenhouse by building energy simulation. Protected Hort Plant Fac 25:123-132. (in Korean) doi:10.12791/ksbec.2016.25.2.123
  15. Liebethal C., B. Huwe, and T. Foken 2005, Sensitivity analysis for two ground heat flux calculation approaches. Agric Meteorol 132:253-262. doi:10.1016/j.agrformet.2005.08.001
  16. Lim T., Y.K. Baik, and D.D. Kim 2020, Heating performance analysis of an air-to-water heat pump using underground air for greenhouse farming. Energies 13:3863. doi:10.3390/en13153863
  17. Ministry of Agriculture, Food and Rural Affairs (MAFRA) 2020, Greenhouse status of facility vegetable and production performance. MAFRA, Sejong, Korea. (in Korean)
  18. Ministry of Trade, Industry and Energy (MOTIE) 2019, Roadmap to revitalize the hydrogen economy. MOTIE, Sejong, Korea. (in Korean)
  19. National Institute of Agricultural Sciences (NIAS) 2009, Case collection of heat loss diagnosis in agricultural facilities. NIAS, Suwon, Korea. (in Korean)
  20. Rasheed A., H.T. Kim, and H.W. Lee 2022, Modeling-based energy performance assessment and validation of air-to-water heat pump system integrated with multi-span greenhouse on cooling mode. Agronomy 12:1374. doi:10.3390/agronomy12061374
  21. Reilly A., and O. Kinnane 2017, The impact of thermal mass on building energy consumption. Appl Energy 198:108-121. doi:10.1016/j.apenergy.2017.04.024
  22. Sethi V.P., K. Sumathy, C. Lee, and D.S. Pal 2013, Thermal modeling aspects of solar greenhouse microclimate control: A review on heating technologies. Sol Energy 96:56-82. doi:10.1016/j.solener.2013.06.034
  23. Stanghellini C. 1987, Transpiration of greenhouse crops: An aid to climate management. PhD Dissertation, Wageningen Univ., The Netherlands.
  24. Taki M., Y. Ajabshirchi, S.F. Ranjbar, A. Rohani, and M. Matloobi 2016, Heat transfer and MLP neural network models to predict inside environment variables and energy lost in a semi-solar greenhouse. Energy Build 110:314-329. doi:10.1016/j.enbuild.2015.11.010
  25. Vadiee A., and V. Martin 2013, Energy analysis and thermoeconomic assessment of the closed greenhouse - The largest commercial solar building. Appl Energy 102:1256-1266. doi:10.1016/j.apenergy.2012.06.051
  26. Yeo U.H., S.Y. Lee, S.J. Park, J.G. Kim, Y.B. Choi, R.W. Kim, J.H. Shin, and I.B. Lee 2022, Rooftop greenhouse: (1) Design and validation of a BES model for a plastic-covered greenhouse considering the tomato crop model and natural ventilation characteristics. Agriculture 12:903. doi:10.3390/agriculture12070903