DOI QR코드

DOI QR Code

Measurement of the applicability of various experimental materials in a medically relevant reactor neutron source part two: Study of H3BO3 and B-DTPA under neutron irradiation

  • Ezddin Hutli (Centre for Energy Research, Thermo-hydraulics Department) ;
  • Peter Zagyvai (Centre for Energy Research, Environmental Physics Department)
  • Received : 2022.08.11
  • Accepted : 2023.03.02
  • Published : 2023.07.25

Abstract

Experiments related to Boron Neutron Capture Therapy (BNCT) accomplished at the Institute of Nuclear Techniques (INT), Budapest University of Technology and Economics (TUB) are presented. Relevant investigations are required before designing BNCT for vivo applications. Samples of relevant boron compounds (H3BO3, BDTPA) usually employed in BNCT were investigated with neutron beam. Channel #5 in the research reactor (100 kW) of INT-TUB provides the neutron beam. Boron samples are mounted on a carrier for neutron irradiation. The particle attenuation of several carrier materials was investigated, and the one with the lowest attenuation was selected. The effects of boron compound type, mass, and compound phase state were also investigated. To detect the emitted charged particles, a traditional ZnS(Ag) detector was employed. The neutron beam's interaction with the detector-detecting layer is investigated. Graphite (as a moderator) was employed to change the neutron beam's characteristics. The fast neutron beam was also thermalized by placing a portable fast neutron source in a paraffin container and irradiating the H3BO3. The obtained results suggest that the direct measurement approach appears to be insufficiently sensitive for determining the radiation dose committed by the Alpha particles from the 10B (n,α) reaction. As a result, a new approach must be used.

Keywords

Acknowledgement

The first author would like to express his deepest appreciation to the INT-TUB training reactor staff for their outstanding assistance. His appreciation also goes to Dr. L. Duffek, SOTE Department of Radiology, Semmelweis Clinic, for his assistance. Prof. Szabolcs Czifrus, director of the Institute of Nuclear Techniques at Budapest University of Technology and Economics (INTTUB), is also appreciated for his insightful comments. My heartfelt gratitude goes to the Ministry of Higher Education in the Great Libyan Arab Jamahiriya for funding this study at the INT-TUB reactor in Hungary.

References

  1. H. Fukuda, C. Honda, N. Wadabayashi, T. Kobayashi, K. Yoshino, J. Hiratsuka, J. Takahashi, T. Akaizawa, Y. Abe, M. Ichihashi, Y. Mishima, Pharmacokinetics of 10B-P-boronophenylalanine in tumours, skin and blood of melanoma patients: a study of boron neutron capture therapy for malignant melanoma, medicine, Melanoma Res. 9 (1999) 75-83. https://doi.org/10.1097/00008390-199902000-00010
  2. K. Nedunchezhian, N. Aswath, M. Thiruppathy, S. Thirugnanamurthy, Boron neutron capture therapy - a literature review, J. Clin. Diagn. Res. 10 (2016), https://doi.org/10.7860/jcdr/2016/19890.9024. Ze01-ze4.
  3. R.F. Barth, Y. Zhang, T. Liu, A realistic appraisal of boron neutron capture therapy as a cancer treatment modality, Cancer Commun. 38 (2018) 36-42, https://doi.org/10.1186/s40880-018-0280-5.
  4. Y. Mishima, Selective Thermal Neutron Capture Therapy of Cancer Cells Using Their Specific Metabolic Activities-Melanoma as Prototype, Cancer Neutron Capture Therapy, Plenum Press, Springer, New York, 1996, pp. 1-26, https://doi.org/10.1007/978-1-4757-9567-7_1.
  5. Y. Mishima, M. Ichihashi, S. Hatta, C. Honda, K. Yamamura, T. Nakagawa, New thermal neutron capture therapy for malignant melanoma: melanogenesis-seeking 10B molecule-melanoma cell interaction from in vitro to first clinical trial, Pigm. Cell.Melanoma Res. 2 (1989) 226-234, https://doi.org/10.1111/j.1600-0749.1989.tb00196.x, 1989.
  6. W.H. Jin, C. Seldon, M. Butkus, W. Sauerwein, H.B. Giap, A review of boron neutron capture therapy: its history and current challenges, Int. J. Part.Ther. 9 (1) (2022) 71-82, https://doi.org/10.14338/IJPT-22-00002.1.
  7. W.A.G. Sauerwein, A. Wittig, R. Moss, Y. Nakagawa, Neutron Capture Therapy: Principles and Applications, Springer Heidelberg, London, 2012. New York Dordrecht.
  8. IAEA, Current Status of Neutron Capture Therapy, International Atomic Energy Agency, Vienna Austria, 2001. IAEA TECDOC-1223, https://www.iaea.org/publications/6168/current-status-of-neutron-capture-therapy.
  9. I. Kato, K. Ono, Y. Sakurai, M. Ohmae, A. Maruhashi, Y. Imahori, M. Kirihata, M. Nakazawa, Y. Yura, Effectiveness of boron neutron capture therapy for recurrent head and neck malignancies, Appl. Radiat. Isot. 97 (2009) 37-42, https://doi.org/10.1016/j.apradiso.2004.05.059, 0DOI:.
  10. S.I. Miyatake, S. Kawabata, K. Yokoyama, T. Kuroiwa, H. Michiue, Y. Sakurai, H. Kumada, M. Suzuki, A. Maruhashi, M. Kirihata, K. Onoc, Survival benefit of boron neutron capture therapy for recurrent malignant gliomas, Appl. Radiat. Isot. 67 (2009). S22-S24. https://doi.org/10.1016/j.apradiso.2009.03.032
  11. S. Minoru, S. Yoshinori, H. Satoru, M. Shinichiro, K. Yuko, N. Kenji, M. Akira, K. Masatoshi, O. Koji, First attempt of boron neutron capture therapy (BNCT) for hepatocellular carcinoma, Jpn. J. Clin. Oncol. 37 (2007) 376-381, https://doi.org/10.1093/jjco/hym039.
  12. M. Suzuki, K. Endo, H. Satoh, Y. Sakurai, H. Kumada, H. Kimura, S. Masunaga, Y. Kinashi, K. Nagata, A. Maruhashi A, K. Ono, A novel concept of treatment of diffuse or multiple pleural tumors by boron neutron capture therapy (BNCT), Radiother. Oncol. 88 (2008) 192-195, https://doi.org/10.1016/j.radonc.2008.06.009.
  13. B.F. Bayanov, V.P. Belov, E.D. Bender, M.V. Bokhovko, G.I. Dimov, V.N. Kononov, O.E. Kononov, N.K. Kuksanov, V.E. Palchikov, V.A. Pivovarov, R.A. Salimov, G.I. Silvestrov, A.N. Skrinsky, N.A. Soloviov, S.Yu Taskaev, Accelerator based neutron source for the neutron-capture and fast neutron therapy at hospital, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 413 (1998) 397-426, https://doi.org/10.1016/S0168-9002(98)00425-2.
  14. S. Minoru, Boron neutron capture therapy (BNCT): a unique role in radiotherapy with a view to entering the accelerator-based BNCT era, Int. J. Clin. Oncol. 25 (2020) 43-50, https://doi.org/10.1007/s10147-019-01480-4.
  15. S. Miyatake, S. Kawabata, Y. Kajimoto, A. Aoki, K. Yokoyama, M. Yamada, T. Kuroiwa, M. Tsuji, Y. Imahori, M. Kirihata, Y. Sakurai, S. Masunaga, K. Nagata, A. Maruhashi, K. Ono, Modified boron neutron capture therapy for malignant gliomas performed using epithermal neutron and two boron compounds with different accumulation mechanisms: an efficacy study based on findings on neuro-images, J. Neurosurg. 103 (2005) 1000-1009, https://doi.org/10.3171/jns.2005.103.6.1000.
  16. A.J. Kreiner, J. Bergueiro, D. Cartelli, M. Baldo, W. Castell, J.G. Asoia, J. Padulo, J. Carlos, S. Sandin, et al., Present status of accelerator-based BNCT, Rep. Practical Oncol. Radiother. 21 (2016) 95-101, https://doi.org/10.1016/j.rpor.2014.11.004.
  17. S. Kamada, M. Takada, M. Suda, T. Hamano, H. Imaseki, M. Hoshi, R. Fujii, M. Nakamura, H. Sato, A. Higashimata, S. Arai S, Development of target system for intense neutron source of P-Li reaction, Appl. Radiat. Isot. 88 (2014) 195-197, https://doi.org/10.1016/j.apradiso.2014.03.015.
  18. H. He, J. Li, P. Jiang, S. Tian, H. Wang, R. Fan, J. Liu, Y. Yang, Z. Liu, J. Wang, The basis and advances in clinical application of boron neutron capture therapy, Radiat. Oncol. 16 (2021) 216-224, https://doi.org/10.1186/s13014-021-01939-7.
  19. H. Ichikawa, E. Taniguchi, T. Fujimoto, Y. Fukumori, Biodistribution of BPA and BSH after single, repeated and simultaneous administrations for neutron-capture therapy of cancer, Appl. Radiat. Isot. 67 (2009) 111-114, https://doi.org/10.1016/j.apradiso.2009.03.026.
  20. K. Ogura, A. Yamazaki, H. Yanagie, M. Eriguchi, E.H. Lehmann, G. Kuehne, G. Bayon, K. Maruyama, H. Kobayashi, Neutron capture autoradiography for a study on boron neutron capture therapy, Radiat. Meas. 34 (2001) 555-558, https://doi.org/10.1016/S1350-4487(01)00227-X.
  21. K. Kanda, An overview: radiation sources, beam quality, dosimetry and spectroscopy in neutron capture therapy, Strahlenther. Onkol. 165 (2-3) (1989) 67-69. PMID: 2494745.
  22. V.D. Svikis, Dense lithium fluoride for gamma-ray-free neutron shielding, Nucl. Instrum. Methods 25 (1963) 93-105. https://doi.org/10.1016/0029-554X(63)90167-8
  23. A.H. Soloway, W. Tjarks, B.A. Barnum, F.-G. R, R.F. Barth, I.M. Codogni, J.G. Wilson, The chemistry of neutron capture therapy, Chem. Rev. 98 (1998) 1515-1562, https://doi.org/10.1021/cr941195u.
  24. M.F. Hawthorne, The role of chemistry in the development of boron neutron capture therapy of cancer, Angew. Chem., Int. Ed. Engl. 32 (1993) 950-984. https://doi.org/10.1002/anie.199309501
  25. E.M. Zsolnay, Sz Czifrus, Thermal neutron field for BNCT experiments at the nuclear reactor of TUB, in: Proceedings of the 7th International Symposium on Neutron Capture Therapy for Cancer, Zurich, Switzerland, 1996, pp. 4-7. September.
  26. E.M. Zsolna, O. Csuka, Sz Czifrus, BNCT programme in Hungary, requirements for boron neutron capture therapy (BNCT) at a nuclear research reactor, Eur.BNCT.Proj.EUR.23830.EN (2009) 95-97, doi:10.2790/11743, https://op.europa.eu/en/publication-detail/-/publication/f4179a3b-ae37-46f8-9820-f0857d85c5fa/language-en.
  27. G.Y. Csom, E.M. Zsolnay, E.J. Szondi, Investigation of neutron beams for the realization of boron neutron capture therapy, Basic Life Sci. 54 (1990) 141-151, https://doi.org/10.1007/978-1-4684-5802-2_11 (Book series home-Springer).
  28. G. Ichikawa, K. Tsuchida, Y. Kiyanagi, A. Ishikawa, Y. Hirata, S. Yoshihashi, K. Watanabe, A. Uritani, T. Hamano, R. Ogawara, M. Suda, K. Igawa, Development of thermal neutron moderator for testing boron agents for boron neutron capture therapy (BNCT), J. Instrum. 14 (2019) 1-11. https://doi.org/10.1088/1748-0221/14/06/T06010
  29. M.H. Jasim, N.T. Abdulameer, Neutron capture cross section measurements of paraffin wax, Int. J.Appl.Innovat.Eng.Manag(IJAIEM) 3 (2014) 112-115.
  30. Y. Gaylan, A. Bozkurt, Investigating thermal and fast neutron shielding properties ofB4C-,B2O3-, Sm2O3-, and Gd2O3-doped polymer matrix composites using Monte Carlo simulations, Suleyman Demirel Univ.Fac.Arts Sci.J. Sci. 16 (2) (2021) 490-499, https://doi.org/10.29233/sdufeffd.933338.
  31. M.J. Berger, J.S. Coursey, M.A. Zucker, J. Chang, Pstar Estar, Astar, Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions, National Institute of Standards and Technology, Gaithersburg, 2005, 2005, version 1.2.3. http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html.
  32. E. Gerhard, Neutron Activation Tables, Gerhard Erdtmann Verlag Chemie Weinheim, New York, 1976, ISBN 3527256938.