DOI QR코드

DOI QR Code

Gamma ray attenuation behaviors and mechanism of boron rich slag/epoxy resin shielding composites

  • Mengge Dong (Department of Resource and Environment, School of Metallurgy, Northeastern University) ;
  • Suying Zhou (Department of Resource and Environment, School of Metallurgy, Northeastern University) ;
  • He Yang (Department of Resource and Environment, School of Metallurgy, Northeastern University) ;
  • Xiangxin Xue (Department of Resource and Environment, School of Metallurgy, Northeastern University)
  • Received : 2023.02.16
  • Accepted : 2023.04.27
  • Published : 2023.07.25

Abstract

Excellent thermal neutron absorption performance of boron expands the potential use of boron rich slag to prepare epoxy resin matrix nuclear shielding composites. However, shielding attenuation behaviors and mechanism of the composites against gamma rays are unclear. Based on the radiation protection theory, Phy-X/PSD, XCOM, and 60Co gamma ray source were integrated to obtain the shielding parameters of boron rich slag/epoxy resin composites at 0.015-15 MeV, which include mass attenuation coefficient (µt), linear attenuation coefficient (µ), half value thickness layer (HVL), electron density (Neff), effective atomic number (Zeff), exposure buildup factor (EBF) and exposure absorption buildup factor (EABF).µt, µ, HVL, Neff, Zeff, EBF and EABF are 0.02-7 cm2/g, 0.04-17 cm-1, 0.045-20 cm, 5-14, 3 × 1023-8 × 1023 electron/g, 0-2000, and 0-3500. Shielding performance is BS4, BS3, BS3, BS1 in descending order, but worse than ordinary concrete. µ and HVL of BS1-BS4 for 60Co gamma ray is 0.095-0.110 cm-1 and 6.3-7.2 cm. Shielding mechanism is main interactions for attenuation gamma ray by BS1-BS4 are elements with higher content or higher atomic number via Photoelectric Absorption at low energy range, and elements with higher content via Compton Scattering and Pair Production in Nuclear Field at middle and higher energy range.

Keywords

Acknowledgement

This work was supported by National Natural Science Foundation of China (52204417), the Fundamental Research Funds for the Central Universities (N2225036), Postdoctoral Science Foundation of Northeastern University (20210207), and the National key research and development plan of China (2020YFC1909805). The authors thank the reviewers for their comments that improved the manuscript.

References

  1. J. An, X. Xue, Life cycle environmental impact assessment of borax and boric acid production in China, J. Clean. Prod. 66 (2014) 121-127. https://doi.org/10.1016/j.jclepro.2013.10.020
  2. M. Dong, S. Zhou, X. Xue, X. Feng, H. Yang, M.I. Sayyed, D. Tishkevich, A. Trukhanov, N. Almousa, Upcycling of boron bearing blast furnace slag as highly cost-effective shield for protection of neutron radiation hazard: an innovative way and proposal of shielding mechanism, J. Clean. Prod. 355 (2022), 131817.
  3. J. You, J. Wang, J. Luo, Z. Peng, M. Rao, G. Li, A facile route to the value-added utilization of ludwigite ore: boron extraction and MxMg1-xFe2O4 spinel ferrites preparation, J. Clean. Prod. 375 (2022), 134206.
  4. W. Ramadan, K. Sakr, M. Sayed, N. Maziad, N. El-Faramawy, Investigation of acrylic/boric acid composite gel for neutron attenuation, Nucl. Eng. Technol. 52 (11) (2020) 2607-2612. https://doi.org/10.1016/j.net.2020.04.014
  5. B.M. Chandrika, H.C.S. Manjunatha, K.N. Sridhar, M.R. Ambika, L. Seenappa, S. Manjunatha, et al., Synthesis, physical, optical and radiation shielding properties of Barium-Bismuth Oxide Borate-A novel nanomaterial, Nucl. Eng. Technol. 55 (5) (2023) 1783-1790. https://doi.org/10.1016/j.net.2023.01.012
  6. M. Dong, S. Zhou, X. Xue, X. Feng, M.I. Sayyed, M.U. Khandaker, D.A. Bradley, The potential use of boron containing resources for protection against nuclear radiation, Radiat. Phys. Chem. 188 (2021), 109601.
  7. M.G. Dong, X.X. Xue, Y. Elmahroug, M.I. Sayyed, M.H.M. Zaid, Investigation of shielding parameters of some boron containing resources for gamma ray and fast neutron, Results Phys. 13 (2019), 102129.
  8. M.G. Dong, X.X. Xue, V.P. Singh, H. Yang, Z.F. Li, M.I. Sayyed, Shielding effectiveness of boron-containing ores in Liaoning province of China against gamma rays and thermal neutrons, Nucl. Sci. Tech. 29 (4) (2018) 1-8. https://doi.org/10.1007/s41365-017-0340-6
  9. K. Okuno, Neutron shielding material based on colemanite and epoxy resin, Radiat. Protect. Dosim. 115 (1-4) (2005) 258-261. https://doi.org/10.1093/rpd/nci154
  10. M. Dong, X. Xue, Z. Li, H. Yang, M.I. Sayyed, B.O. Elbashir, Preparation, shielding properties and mechanism of a novel neutron shielding material made from natural Szaibelyite resource, Prog. Nucl. Energy 106 (2018) 140-145. https://doi.org/10.1016/j.pnucene.2018.03.010
  11. M. Dong, X. Xue, S. Liu, H. Yang, Z. Li, M.I. Sayyed, O. Agar, Using iron concentrate in Liaoning Province, China, to prepare material for X-Ray shielding, J. Clean. Prod. 210 (2019) 653-659. https://doi.org/10.1016/j.jclepro.2018.11.038
  12. M. Dong, S. Zhou, X. Xue, M.I. Sayyed, D. Tishkevich, A. Trukhanov, C. Wang, Study of comprehensive shielding behaviors of chambersite deposit for neutron and gamma ray, Prog. Nucl. Energy 146 (2022), 104155.
  13. I. Kanno, D. Nishimatsu, F. Funama, Simulation study on the feasibility of current-mode SPECT for B-10 concentration estimation in boron neutron capture therapy, J. Instrum. 14 (2) (2019), C02002.
  14. M. Chin, N. Spyrou, Monitoring of gamma emission and neutron transmission during boron neutron capture treatment delivery, J. Radioanal. Nucl. Chem. 281 (1) (2009) 149-152. https://doi.org/10.1007/s10967-009-0063-1
  15. D.Y. Shu, C.R. Geng, X.B. Tang, C.H. Gong, W.C. Shao, Y. Ai, Analysis on the emission and potential application of Cherenkov radiation in boron neutron capture therapy: a Monte Carlo simulation study, Appl. Radiat. Isot. 137 (2018) 219-224. https://doi.org/10.1016/j.apradiso.2018.04.012
  16. M. Dong, X. Xue, H. Yang, Z. Li, Highly cost-effective shielding composite made from vanadium slag and boron-rich slag and its properties, Radiat. Phys. Chem. 141 (2017) 239-244. https://doi.org/10.1016/j.radphyschem.2017.07.023
  17. T. Kaur, J. Sharma, T. Singh, Experimental evaluation of gamma rays shielding parameters for Zn-Cd-Sn-Pb quaternary alloy, Radiat. Phys. Chem. 156 (2019) 193-198. https://doi.org/10.1016/j.radphyschem.2018.11.010
  18. M.I. Sayyed, A. Kumar, H.O. Tekin, R. Kaur, M. Singh, O. Agar, M.U. Khandaker, Evaluation of gamma-ray and neutron shielding features of heavy metals doped Bi2O3-BaO-Na2O-MgO-B2O3 glass systems, Prog. Nucl. Energy 118 (2020), 103118.
  19. A. Sharma, M.I. Sayyed, O. Agar, H.O. Tekin, Simulation of shielding parameters for TeO2-WO3-GeO2 glasses using FLUKA code, Results Phys. 13 (2019), 102199.
  20. M.I. Sayyed, M.Y. AlZaatreh, M.G. Dong, M.H.M. Zaid, K.A. Matori, H.O. Tekin, A comprehensive study of the energy absorption and exposure buildup factors of different bricks for gamma-rays shielding, Results Phys. 7 (2017) 2528-2533. https://doi.org/10.1016/j.rinp.2017.07.028
  21. M.I. Sayyed, Y. Elmahroug, B.O. Elbashir, S.A. Issa, Gamma-ray shielding properties of zinc oxide soda lime silica glasses, J. Mater. Sci. Mater. Electron. 28 (2017) 4064-4074. https://doi.org/10.1007/s10854-016-6022-z
  22. O. Agar, E. Kavaz, E.E. Altunsoy, O. Kilicoglu, H.O. Tekin, M.I. Sayyed, T.T. Erguzel, N. Tarhan, Er2O3 effects on photon and neutron shielding properties of TeO2-Li2O-ZnO-Nb2O5 glass system, Results Phys. 13 (2019), 102277.
  23. M.H.A. Mhareb, Y. Slimani, Y.S. Alajerami, M.I. Sayyed, E. Lacomme, M.A. Almessiere, Structural and radiation shielding properties of BaTiO3 ceramic with different concentrations of Bismuth and Ytterbium, Ceram. Int. 46 (18) (2020) 28877-28886. https://doi.org/10.1016/j.ceramint.2020.08.055
  24. M.I. Sayyed, M.H.A. Mhareb, Y.S.M. Alajerami, K.A. Mahmoud, M.A. Imheidat, F. Alshahri, M. Alqahtani, T. Al-Abdullah, Optical and radiation shielding features for a new series of borate glass samples, Optik 239 (2021), 166790.
  25. E. S, akar, O.F. € Ozpolat, B. Al € im, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Radiat. Phys. Chem. 166 (2020), 108496.
  26. Y. Al-Hadeethi, M.I. Sayyed, Radiation attenuation properties of Bi2O3--Na2O-V2O5-TiO2-TeO2 glass system using Phy-X/PSD software, Ceram. Int. 46 (4) (2020) 4795-4800. https://doi.org/10.1016/j.ceramint.2019.10.212
  27. M.J. Berger, J.H. Hubbell, XCOM: Photon Cross Sections on a Personal Computer (No. NBSIR-87-3597), National Bureau of Standards, Washington, DC (USA), 1987 (Center for Radiation Research).
  28. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, X-ray absorption in matter, Reeng. XCOM. Radiat. Phys. Chem. 60 (1-2) (2001) 23-24. https://doi.org/10.1016/S0969-806X(00)00324-8
  29. R.C. Murty, Effective atomic numbers of heterogeneous materials, Nature 207 (4995) (1965) 398-399. https://doi.org/10.1038/207398a0
  30. Y. Harima, An approximation of gamma-ray buildup factors by modified geometrical progression, Nucl. Sci. Eng. 83 (2) (1983) 299-309. https://doi.org/10.13182/NSE83-A18222
  31. Y. Harima, Y. Sakamoto, S. Tanaka, M. Kawai, Validity of the geometric-progression formula in approximating gamma-ray buildup factors, Nucl. Sci. Eng. 94 (1) (1986) 24-35. https://doi.org/10.13182/NSE86-A17113
  32. ANSI/ANS-6.4.3, Gamma Ray Attenuation Coefficient and Buildup Factors for Engineering Materials [S], American Nuclear Society, La Grange Park, Illinois, 1991.
  33. D.K. Gaikwad, S.S. Obaid, M.I. Sayyed, R.R. Bhosale, V.V. Awasarmol, A. Kumar, M.D. Shirsat, P.P. Pawar, Comparative study of gamma ray shielding competence of WO3-TeO2-PbO glass system to different glasses and concretes, Mater. Chem. Phys. 213 (2018) 508-517. https://doi.org/10.1016/j.matchemphys.2018.04.019
  34. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes, Ann. Nucl. Energy 24 (17) (1997) 1389-1401. https://doi.org/10.1016/S0306-4549(97)00003-0