DOI QR코드

DOI QR Code

Multigroup cross-sections generated using Monte-Carlo method with flux-moment homogenization technique for fast reactor analysis

  • Yiwei Wu (School of Nuclear Science and Engineering, Shanghai Jiao Tong University) ;
  • Qufei Song (School of Nuclear Science and Engineering, Shanghai Jiao Tong University) ;
  • Kuaiyuan Feng (School of Nuclear Science and Engineering, Shanghai Jiao Tong University) ;
  • Jean-Francois Vidal (CEA, DES/IRESNE/DER/SPRC/LEPh) ;
  • Hanyang Gu (School of Nuclear Science and Engineering, Shanghai Jiao Tong University) ;
  • Hui Guo (School of Nuclear Science and Engineering, Shanghai Jiao Tong University)
  • Received : 2023.01.19
  • Accepted : 2023.04.08
  • Published : 2023.07.25

Abstract

The development of fast reactors with complex designs and operation status requires more accurate and effective simulation. The Monte-Carlo method can generate multi-group cross-sections in arbitrary geometry without approximation on resonances treatment and leads to good results in combination with diffusion codes. However, in previous studies, the coupling of Monte-Carlo generated multi-group cross-sections (MC-MGXS) and transport solvers has shown relatively large biases in fast reactor problems. In this paper, the main contribution to the biases is proved to be the neglect of the angle-dependence of the total cross-sections. The flux-moment homogenization technique (MHT) is proposed to take into account this dependence. In this method, the angular dependence is attributed to the transfer cross-sections, keeping an independent form for the total sections. For the MET-1000 benchmark, the multi-group transport simulation results with MC-MGXS generated with MHT are improved by 700 pcm and an additional 120 pcm with higher order scattering. The factors that cause the residual bias are discussed. The core power distribution bias is also significantly reduced when MHT is used. It proves that the MCMGXS with MHT can be applicable with transport solvers in fast reactor analysis.

Keywords

Acknowledgement

This study is sponsored by the National Natural Science Foundation of China (No. 12105170, 12135008). The computations in this paper were run on the π 2.0 cluster supported by the Center for High-Performance Computing at Shanghai Jiao Tong University.

References

  1. J.E. Hoogenboom, V.A. Khotylev, J.M. Tholammakkil, Generation of multi-group cross sections and scattering matrices with the Monte Carlo code MCNP5, in: J. Gonnord, T. Tajima (Eds.), Proceedings M&C+SNA 2007 Conference, ANS, Monterey, CA, USA, 2007, pp. 1-8, 15-19 April 2007.
  2. J.T. Goorley, M.R. James, T.E. Booth, J.S. Bull, L.J. Cox, J.W. Durkee Jr., J.S. Elson, M.L. Fensin, R.A.I. Forster, J.S. Hendricks, H.G.I. Hughes, R.C. Johns, B.C. Kiedrowski, R.L. Martz, S.G. Mashnik, G.W. McKinney, D.B. Pelowitz, R.E. Prael, J.E. Sweezy, L.S. Waters, T. Wilcox, A.J. Zukaitis, in: Initial MCNP6 Release Overview - MCNP6 Version 1.0, 2013, 1086758, https://doi.org/10.2172/1086758. LA-UR-13-22934.
  3. H.J. Shim, Y.C. Jin, J.S. Song, H.K. Chang, Generation of few group diffusion theory constants by Monte Carlo code, Trans. Am. Nucl. Soc. 99 (2008) 343-345.
  4. H.J. Park, H.J. Shim, H.G. Joo, C.H. Kim, Generation of few-group diffusion theory constants by Monte Carlo code McCARD, Nucl. Sci. Eng. 172 (2012) 66-77, https://doi.org/10.13182/NSE11-22.
  5. J. Leppanen, M. Pusa, E. Fridman, Overview of methodology for spatial homogenization in the Serpent 2 Monte Carlo code, Ann. Nucl. Energy 96 (2016) 126-136, https://doi.org/10.1016/j.anucene.2016.06.007.
  6. E. Fridman, J. Leppanen, On the use of the Serpent Monte Carlo code for few-group cross section generation, Ann. Nucl. Energy 38 (2011) 1399-1405, https://doi.org/10.1016/j.anucene.2011.01.032.
  7. K. Wang, Z. Li, D. She, J. Liang, Q. Xu, Y. Qiu, J. Yu, J. Sun, X. Fan, G. Yu, Rmc - a Monte Carlo code for reactor core analysis, Ann. Nucl. Energy 82 (2015) 121-129, https://doi.org/10.1016/j.anucene.2014.08.048.
  8. W. Boyd, A. Nelson, P.K. Romano, S. Shaner, B. Forget, K. Smith, Multigroup cross-section generation with the OpenMC Monte Carlo particle transport code, Nucl. Technol. 205 (2019) 928e944, https://doi.org/10.1080/00295450.2019.1571828.
  9. T.D.C. Nguyen, H. Lee, D. Lee, Use of Monte Carlo code MCS for multigroup cross section generation for fast reactor analysis, Nucl. Eng. Technol. 53 (2021) 2788-2802, https://doi.org/10.1016/j.net.2021.03.005.
  10. E. Nikitin, E. Fridman, K. Mikityuk, Solution of the OECD/NEA neutronic SFR benchmark with Serpent-DYN3D and Serpent-PARCS code systems, Ann. Nucl. Energy 75 (2015) 492-497, https://doi.org/10.1016/j.anucene.2014.08.054.
  11. N. Martin, R. Stewart, S. Bays, A multiphysics model of the versatile test reactor based on the MOOSE framework, Ann. Nucl. Energy 172 (2022), 109066, https://doi.org/10.1016/j.anucene.2022.109066.
  12. C.-S. Lin, W.S. Yang, An assessment of the applicability of multigroup cross sections generated with Monte Carlo method for fast reactor analysis, Nucl. Eng. Technol. 52 (2020) 2733-2742, https://doi.org/10.1016/j.net.2020.05.029.
  13. H. Guo, Y. Wu, X. Jin, K. Feng, X. Huo, H. Gu, Preliminary verification of multigroup cross-sections generation and locally heterogeneous transport calculation using OpenMC with CEFR start-up tests benchmark, Prog. Nucl. Energy 154 (2022), 104484, https://doi.org/10.1016/j.pnucene.2022.104484.
  14. P.K. Romano, B. Forget, The OpenMC Monte Carlo particle transport code, Ann. Nucl. Energy 51 (2013) 274-281, https://doi.org/10.1016/j.anucene.2012.06.040.
  15. A.G. Nelson, W. Boyd, P.K. Romano, The effect of the flux separability approximation on multigroup neutron transport, JNE 2 (2021) 86-96, https://doi.org/10.3390/jne2010009.
  16. T.Q. Tran, A. Cherezov, X. Du, D. Lee, Verification of a two-step code system MCS/RAST-F to fast reactor core analysis, Nucl. Eng. Technol. (2021), https://doi.org/10.1016/j.net.2021.10.038. S1738573321006227.
  17. J.M. Ruggieri, J. Tommasi, J.F. Lebrat, C. Suteau, D. Plisson-Rieunier, C. De Saint Jean, G. Rimpault, J.C. Sublet, Eranos 2.1 : international code system for GEN IV fast reactor analysis, in: American Nuclear Society - ANS, 2006. La Grange Park (United States), Reno, USA, https://www.osti.gov/biblio/21021146. La Grange Park (United States), Reno, USA.
  18. E. Nikitin, E. Fridman, K. Mikityuk, On the use of the SPH method in nodal diffusion analyses of SFR cores, Ann. Nucl. Energy 85 (2015) 544-551, https://doi.org/10.1016/j.anucene.2015.06.007.
  19. J.-F. Vidal, P. Archier, A. Calloo, P. Jacquet, J. Tommasi, An improved energy-collapsing method for core-reflector modelization in sfr core calculations using the paris platform, in: PHYSOR 2012, Tennessee, Knoxville, 2012, p. 15. USA.
  20. J.-F. Vidal, P. Archier, B. Faure, V. Jouault, J.-M. Palau, V. Pascal, G. Rimpault, F. Auffret, L. Graziano, E. Masiello, S. Santandrea, APOLLO3® homogenization techniques for transport core calculations - application to the ASTRID CFV core, Nucl. Eng. Technol. 49 (2017) 1379-1387, https://doi.org/10.1016/j.net.2017.08.014.
  21. R. Qiu, X. Ma, Q. Xu, J. Liu, Y. Chen, Development and verification of multigroup cross section process code TXMAT for fast reactor RBEC-M analysis, in: Volume 3: Nuclear Fuel and Material, Reactor Physics and Transport Theory; Innovative Nuclear Power Plant Design and New Technology Application, American Society of Mechanical Engineers, Shanghai, China, 2017, V003T02A015, https://doi.org/10.1115/ICONE25-66550.