• Title/Summary/Keyword: Flux-moment homogenization

Search Result 2, Processing Time 0.016 seconds

APOLLO3 homogenization techniques for transport core calculations-application to the ASTRID CFV core

  • Vidal, Jean-Francois;Archier, Pascal;Faure, Bastien;Jouault, Valentin;Palau, Jean-Marc;Pascal, Vincent;Rimpault, Gerald;Auffret, Fabien;Graziano, Laurent;Masiello, Emiliano;Santandrea, Simone
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1379-1387
    • /
    • 2017
  • This paper presents a comparison of homogenization techniques implemented in the APOLLO3 platform for transport core calculations: standard scalar flux weighting and new flux-moment homogenization, in different combinations with (or without) leakage models. Besides the historical B1-homogeneous model, a new B-heterogeneous one has indeed been implemented recently in the two/three-dimensional-transport solver using the method of characteristics. First analyses have been performed on a very simple Sodium Fast Reactor core with a regular hexagonal lattice. They show that using the heterogeneous leakage model in association with flux-moment homogenization strongly improves the prediction of $k_{eff}$ and void reactivity effects. These good results are confirmed when the application is done to the fissile assemblies of the more complex CFV (Low Void Effect) core of the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) project of sodium-cooled fast breeder reactor (Generation IV).

Multigroup cross-sections generated using Monte-Carlo method with flux-moment homogenization technique for fast reactor analysis

  • Yiwei Wu;Qufei Song;Kuaiyuan Feng;Jean-Francois Vidal;Hanyang Gu;Hui Guo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2474-2482
    • /
    • 2023
  • The development of fast reactors with complex designs and operation status requires more accurate and effective simulation. The Monte-Carlo method can generate multi-group cross-sections in arbitrary geometry without approximation on resonances treatment and leads to good results in combination with diffusion codes. However, in previous studies, the coupling of Monte-Carlo generated multi-group cross-sections (MC-MGXS) and transport solvers has shown relatively large biases in fast reactor problems. In this paper, the main contribution to the biases is proved to be the neglect of the angle-dependence of the total cross-sections. The flux-moment homogenization technique (MHT) is proposed to take into account this dependence. In this method, the angular dependence is attributed to the transfer cross-sections, keeping an independent form for the total sections. For the MET-1000 benchmark, the multi-group transport simulation results with MC-MGXS generated with MHT are improved by 700 pcm and an additional 120 pcm with higher order scattering. The factors that cause the residual bias are discussed. The core power distribution bias is also significantly reduced when MHT is used. It proves that the MCMGXS with MHT can be applicable with transport solvers in fast reactor analysis.