DOI QR코드

DOI QR Code

Modeling of deposition and erosion of CRUD on fuel surfaces under sub-cooled nucleate boiling in PWR

  • Seungjin Seo (Department of Nuclear Engineering, Seoul National University) ;
  • Nakkyu Chae (Department of Nuclear Engineering, Seoul National University) ;
  • Samuel Park (Department of Nuclear Engineering, Seoul National University) ;
  • Richard I. Foster (Nuclear Research Institute for Future Technology and Policy, Seoul National University) ;
  • Sungyeol Choi (Department of Nuclear Engineering, Seoul National University)
  • Received : 2022.11.30
  • Accepted : 2023.04.04
  • Published : 2023.07.25

Abstract

Simulating the Corrosion-Related Unidentified Deposit (CRUD) on the surface of fuel assemblies is necessary to predict the axial offset anomaly and the localized corrosion induced by the CRUD during the operation of nuclear power plants. A new CRUD model was developed to predict the formation of the CRUD deposits, considering the deposition and erosion mechanisms. The heat transfer and capillary flow within the CRUD were also considered to evaluate the boiling amount within the CRUD layer. This model predicted a CRUD deposit thickness of 44 ㎛ during a one-cycle operation of the Seabrook nuclear power plant. The CRUD deposition tended to accelerate and decelerate during the simulation, by being related to boiling mechanism on the deposits surface. Additionally, during a three-cycle operation corresponding to the refueling period, the CRUD deposition was saturated at a thickness of 80 ㎛, which was in good agreement with the suggested thickness for CRUD buildupin pressurized water reactors. Surface boiling on the thin CRUD deposits enhanced the acceleration of the deposition, even when the wick boiling properties were not favorable for CRUD deposition. To ensure the certainty of the simulation results, sensitivity analyses were conducted for the porosity, chimney density, and the constants employed in the proposed model of the CRUD.

Keywords

Acknowledgement

This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No. 2106022), the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20224000000120), and the National Research Foundation of Korea (NRF) grant funded by the Korean goverment (Ministry of Science, ICT and Future Planning) (No. RS202200144515).

References

  1. J. Deshon, PWR Axial Offset Anomaly (AOA) Guidelines, Revision 1, EPRI, Palo Alto, CA, 2004, 1008102.
  2. A. Jaiswal, A Numerical Study on Parameters Affecting Boric Acid Transport and Chemistry within Fuel Corrosion Deposits during Crud Induced Power Shift, Dissertation in University of Illinois at Urbana-Champaign, 2013.
  3. H.C. Shin, Solution for Safety Issue by Using the Code System for Multi-Physics Reactor Core Engineering, in: Nuclear Safety & security Information Conference, Korea, 2018.
  4. J. Deshon, D. Hussey, B. Kendrick, J. McGurk, J. Secker, M. Short, Pressurized water reactor fuel crud and corrosion modeling, JOM (J. Occup. Med.) 63 (2011) 64-72. https://doi.org/10.1007/s11837-011-0141-z
  5. W.Y. Maeng, B.S. Choi, J.W. Na, Control of Crud and Boron Deposition for AOA Prevention, Korea Atomic Energy Research Institute, 2010. KAERI/RR-3184/2009.
  6. D.H. Charlesworth, Deposition of corrosion products in boiling water systems, Chemical Engineering Progress Symposium Series 66 (104) (1970) 21-30. Atomic Energy of Canada Ltd., Chalk River, Ont.
  7. B. Kendrick, V. Petrov, D. Walker, A. Manera, CILC Studies with Comparative Analysis to Existing Plants, Los Alamos National Laboratory, 2013. CASL-U2013-0224-000.
  8. S. Seo, B. Park, S.J. Kim, H.C. Shin, S.J. Lee, M. Lee, S. Choi, BOTANI: high-fidelity multiphysics model for boron chemistry in CRUD deposits, Nucl. Eng. Technol. (2020), https://doi.org/10.1016/j.net.2020.11.008.
  9. M. ju Kim, A CRUD Deposit Model on Boiling Surfaces for AOA Assessment, Thesis in Korea Advanced Institute of Science and Technology, 2015.
  10. S.Y. Jang, Development of a Computer Code for Prediction of Crud Transport in PWRs, Thesis in Korea Advanced Institute of Science and Technology, 1991.
  11. J. Kim, Development of CRUD Thickness Estimation Model under Pressurized Water Reactor Condition, Thesis in Korea Advanced Institute of Science and Technology, 2016.
  12. S. Dickinson, J. Henshaw, J. McGurk, H. Sims, Modeling PWR Fuel Corrosion Product Deposition and Growth Processes: Final Report, EPRI, Palo Alto, CA, 2005, 1011743.
  13. D.H. Lister, Crud Deposits on Zircaloy-Clad Fuel, Atomic Energy of Canada Ltd., 1980. AECL-6962.
  14. O. IrCuIT, Radioactive Substances in the Primary Circuit of Water-Cooled Reactors, IAEA, 2012. IAEA-TECDOC-1672.
  15. C. Marchetto, D. Tarabelli, D. You, C. Andrieu, A. Long, D. Zeitoun, Pactole V3: a new code version to predict corrosion product contamination, In: Water Chemistry for Nuclear Reactor System 1 (2000) 224-229.
  16. M. Rafique, N.M. Mirza, S.M. Mirza, M.J. Iqbal, Review of computer codes for modeling corrosion product transport and activity build-up in light water reactors, Nukleonika 55 (2010) 263-269.
  17. C.B. Lee, Evaluation of CRUDTRAN Code to Predict Transport of Corrosion Products and Radioactivity in the PWR Primary Coolant System, in: Societe Francaise d'Energie Nucleaire (SFEN), 75 - Paris (France), 2002.
  18. K.A. Dinov, A model of crud particle/wall interaction and deposition in a pressurized water reactor primary system, Nucl. Technol. 94 (1991) 281-285. https://doi.org/10.13182/NT91-A15809
  19. F. Dacquait, J. Genin, L. Brissonneau, Modelling of the Contamination Transfer in Nuclear Reactors: the OSCAR Code-Applications to SFR and ITER, in: 1st IAEA Work. Challenges Cool. Fast Neutron Spectr. Syst., AIEA, 2017.
  20. A. Naillon, P. Joseph, M. Prat, Ion transport and precipitation kinetics as key aspects of stress generation on pore walls induced by salt crystallization, Phys. Rev. Lett. 120 (2018), 34502.
  21. A. Naillon, P. Joseph, M. Prat, Sodium chloride precipitation reaction coefficient from crystallization experiment in a microfluidic device, J. Cryst. Growth 463 (2017) 201-210. https://doi.org/10.1016/j.jcrysgro.2017.01.058
  22. D.A. Bridle, K.R. Butter, P. Cake, G.C.W. Comley, C.R. Mitchell, The Nature and Behavior of Particulates in PWR Primary Coolant, EPRI, Palo Alto, CA (USA), 1989. AEA Technology, Winfrith, EPRI-NP-6640.
  23. J. Mcgrady, The Effect of Water Chemistry on Corrosion Product Build-Up under PWR Primary Coolant Conditions, Thesis in The University of Manchester, United Kingdom, 2017.
  24. A. Strasser, K. Sheppard, J. Santucci, Corrosion-Product Buildup on LWR Fuel Rods, EPRI, 1985. EPRI-NP-3789.
  25. R.W. Rasmussen, Duke Power Perspective of Rod Consolidation, Vol. 1, 1986. CONF-860417.
  26. W.E. Berry, R.B. Diegle, Survey of Corrosion Product Generation, Transport, and Deposition in Light Water Nuclear Reactors, Battelle Columbus Labs., OH (United States), 1979. EPRI NP-522.
  27. R.F. Hazelton, Characteristics of Fuel Crud and its Impact on Storage, Handling, and Shipment of Spent Fuel, Pacific Northwest Lab., 1987. PNL-6273.
  28. M. Bolz, W. Hoffmann, W. Ruehle, F. Becker, Characterization of colloids in primary coolant, Water Chem. Nucl. React. Syst. (1996) 42-46.
  29. S. Odar, P. Rudling, CRUD in PWR/VVER coolant, Vol. 2, ANT International, Molnlycke, Sweden, 2015, pp. 13-18.
  30. S.K. Beal, Correlations for the sticking probability and erosion of particles, J. Aerosol Sci. 9 (1978) 455-461. https://doi.org/10.1016/0021-8502(78)90008-3
  31. C. Pan, B.G. Jones, A.J. Machiels, Wick Boiling Performance in Porous Deposits with Chimneys, in: 23rd National Heat Transfer Conference, Denver, Colorado, United States, Vol. 47, 1985, pp. 15-24.
  32. L. Zou, H. Zhang, J. Gehin, B. Kochunas, Coupled thermal-hydraulic/neutronics/crud framework in prediction of crud-induced power shift phenomenon, Nucl. Technol. 183 (2013) 535-542. https://doi.org/10.13182/NT13-A19440
  33. R. Byron Bird, Transport phenomena, Appl. Mech. Rev. 55 (1) (2002) R1-R4. https://doi.org/10.1115/1.1424298
  34. N.D. Pope, J. Widdows, M.D. Brinsley, Estimation of bed shear stress using the turbulent kinetic energy approachda comparison of annular flume and field data, Continent. Shelf Res. 26 (2006) 959-970. https://doi.org/10.1016/j.csr.2006.02.010
  35. K.R. Stapleton, D.A. Huntley, Seabed stress determinations using the inertial dissipation method and the turbulent kinetic energy method, Earth Surf. Process. Landforms 20 (1995) 807-815. https://doi.org/10.1002/esp.3290200906
  36. C.E.L. Thompson, C.L. Amos, T.E.R. Jones, J. Chaplin, The manifestation of fluid-transmitted bed shear stress in a smooth annular flume-a comparison of methods, J. Coast Res. (2003) 1094-1103.
  37. J.C. Chen, Correlation for boiling heat transfer to saturated fluids in convective flow, Ind. Eng. Chem. Process Des. Dev. 5 (1966) 322-329. https://doi.org/10.1021/i260019a023
  38. C. Paz, E. Suarez, M. Concheiro, A. Copo, V. Tobio, CFD implementation and experimental validation of the Chen model for heat transfer in nucleate boiling, Comput. Methods Multiph. Flow VII. 79 (2013) 377-385.
  39. D. Butterworth, The Correlation of Cross-Flow Pressure Drop Data by Means of the Premeability Concept, UKAEA Atomic Energy Research Establishment, 1979.
  40. H. Steiner, A. Kobor, L. Gebhard, A wall heat transfer model for subcooled boiling flow, Int. J. Heat Mass Tran. 48 (2005) 4161-4173. https://doi.org/10.1016/j.ijheatmasstransfer.2005.03.032
  41. D.J. Walter. A High Fidelity Multiphysics Framework for Modeling CRUD Deposition on PWR Fuel Rods, Thesis in University of Michigan, 2016.
  42. M.P. Short, D. Hussey, B.K. Kendrick, T.M. Besmann, C.R. Stanek, S. Yip, Multiphysics modeling of porous CRUD deposits in nuclear reactors, J. Nucl. Mater. 443 (2013) 579-587. https://doi.org/10.1016/j.jnucmat.2013.08.014
  43. M. Jin, M. Short, Multiphysics modeling of two-phase film boiling within porous corrosion deposits, J. Comput. Phys. 316 (2016) 504-518. https://doi.org/10.1016/j.jcp.2016.03.013
  44. J. Deshon, Modeling PWR Fuel Corrosion Product Deposition and Growth Processes, EPRI, Palo Alto, CA, 2004, 1009734.
  45. J. Henshaw, J.C. McGurk, H.E. Sims, A. Tuson, S. Dickinson, J. Deshon, A model of chemistry and thermal hydraulics in PWR fuel crud deposits, J. Nucl. Mater. 353 (2006) 1-11. https://doi.org/10.1016/j.jnucmat.2005.01.028
  46. B.G. Park, I.H. Rhee, B.Y. Jung, K. Hong, Development of Water Chemistry Model in CRUD Deposits on Fuel Cladding, Korea Atomic Energy Research Institute, 2010. KAERI/CM-1326/2009.
  47. B.G. Park, S. Seo, S.J. Kim, J.H. Kim, S. Choi, Meso-scale multi-physics full coupling within porous CRUD deposits on nuclear fuel, J. Nucl. Mater. 512 (2018) 100-117. https://doi.org/10.1016/j.jnucmat.2018.10.002
  48. I.U. Haq. Heat and Mass Transfer Analysis for Crud Coated PWR Fuel, Thesis in Imperical College, London, 2011.
  49. W.A. Byers, G. Wang, Assessing zinc injection limitations in high-duty pwrs, A Present. to EPRI Fuel Reliab, Progr. Work. Gr. 1 (2006).
  50. G. Wang. Improved Crud Heat Transfer Model for Dryout on Fuel Pin Surfaces at PWR Operating Conditions, Dissertation in Pennsylvania State University, 2009.
  51. G. Wang, W.A. Byers, M.Y. Young, J. Deshon, Z. Karoutas, R.L. Oelrich, Thermal conductivity measurements for simulated pwr crud, in: International Conference on Nuclear Engineering, American Society of Mechanical Engineers, 2013. Vol. 55782, pp. V001T02A044.
  52. B. Galperin, L.H. Kantha, S. Hassid, A. Rosati, A quasi-equilibrium turbulent energy model for geophysical flows, J. Atmos. Sci. 45 (1988).
  53. R. Soulsby, The bottom boundary layer of shelf seas. 189e266, Phys. Oceanogr. Coast. Shelf Seas. Elsvier Oceanogr. Ser. 35 (1983).
  54. J. Chen, On the Interaction between Fuel Crud and Water Chemistry in Nuclear Power Plants, Swedish Nuclear Power Inspectorate, Stockholm, 2000. SKI-R00-5.
  55. J. McElrath, Pressurized Water Reactor Primary Water Chemistry Guidelines, EPRI 1 (2014) 2-97, 3002000505.
  56. C.B. Lee, Modeling of Corrosion Product Transport in PWR Primary Coolant, Dissertation in Massachusetts, Institute of Technology, 1990.