DOI QR코드

DOI QR Code

Activity concentrations and radiological hazard assessments of 226Ra, 232Th, 40K, and 137Cs in soil samples obtained from the Dongnam Institute of Radiological & Medical Science, Korea

  • Jieun Lee (Dongnam Institute of Radiological & Medical Sciences) ;
  • HyoJin Kim (Dongnam Institute of Radiological & Medical Sciences) ;
  • Yong Uk Kye (Dongnam Institute of Radiological & Medical Sciences) ;
  • Dong Yeon Lee (Department of Radiological Science, College of Nursing, Health Sciences & Human Ecology, Dong-Eui University) ;
  • Wol Soon Jo (Dongnam Institute of Radiological & Medical Sciences) ;
  • Chang Geun Lee (Dongnam Institute of Radiological & Medical Sciences) ;
  • Jeung Kee Kim (Dongnam Institute of Radiological & Medical Sciences) ;
  • Jeong-Hwa Baek (Dongnam Institute of Radiological & Medical Sciences) ;
  • Yeong-Rok Kang (Dongnam Institute of Radiological & Medical Sciences)
  • Received : 2022.12.19
  • Accepted : 2023.03.17
  • Published : 2023.07.25

Abstract

The radioactivity concentration of environmental radionuclides was analyzed for soil and sand at eight locations within a radius of 255 m centered on the Dongnam Institute of Radiological & Medical Science (DIRAMS), Korea. The average activity concentrations of 40K, 137Cs, 226Ra, and 232Th were 661.1 Bq/kg-dry, 0.9 Bq/kg-dry, 21.9 Bq/kg-dry, and 11.1 Bq/kg-dry, respectively. The activity of 40K and 137Cs was lower than the 3-year (2017-2019) average reported by the Korea Institute of Nuclear Safety, respectively. Due to the nature of granite-rich soil, the radioactivity of 40K was 0.6-fold higher than in other countries, while 137Cs was in the normal fluctuation range (15-30 Bq/kg-dry) of the concentration of radioactive fallout from nuclear tests. The activity of 226Ra and 232Th was lower than in Korean soils reported by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The average activity concentrations of 232Th and 40K for the soil and sand samples from DIRAMS were within the range specified by UNSCEAR in 2000. The radium equivalent activity and internal and external hazard index values were below the recommended limits (1 mSv/y). These radionuclide concentration (226Ra, 232Th, 40K, and 137Cs) data can be used for regional environmental monitoring and ecological impact assessments of nuclear power plant accidents.

Keywords

Acknowledgement

This work was supported by Dongnam Institute of Radiological & Medical Sciences, with the grant funded by the Korean Government (MSIT) (Grant No. 50491e2023).

References

  1. J. Wang, J. Du, Q. Bi, Natural radioactivity assessment of surface sediments in the Yangtze Estuary, Mar. Pollut. Bull. 114 (2017) 602-608. https://doi.org/10.1016/j.marpolbul.2016.09.040
  2. A. Abbasi, H.M.H. Zakaly, F. Mirekhtiary, Baseline levels of natural radionuclides concentration in sediments East coastline of North Cyprus, Mar. Pollut. Bull. 161 (2020), 111793.
  3. A. Abbasi, M. Algethami, O. Bawazeer, H.Z.H. Zakaly, Distribution of natural and anthropogenic radionuclides and associated radiation indices in the Southwestern coastline of Caspian Sea, Mar. Pollut. Bull. 178 (2022), 113593.
  4. V. Thangam, A. Rajalakshmi, A. Chandrasekaran, B. Jananee, Measurement of natural radioactivity in river sediments of Thamirabarani, Tamilnadu, India using gamma ray spectroscopic technique, Int. J. Environ. Anal. Chem. (2020) 422-433.
  5. C. Papastefanou, M. Manolopoulou, S. Stoulos, A. Ioannidou, E. Gerasopoulos, Soil-to-plant transfer of 137Cs, 40K and 7 Be, J. Environ. Radioact. 45 (1999) 59-65. https://doi.org/10.1016/S0265-931X(98)00077-0
  6. A. Abbasi, F. Mirekhtiary, 137Cs and 40K concentration ratios(CRs) in annual and perennial plants in the Caspian coast, Mar. Pollut. Bull. 146 (2019) 671-677. https://doi.org/10.1016/j.marpolbul.2019.06.076
  7. A.H. Alomari, M.Z. Saleh, S. Hashim, A. Alsayaheen, A. Abukashabeh, Statistical relationship between activity concentrations of radionuclides 226Ra, 232Th, 40K and 137Cs and geological formations in surface soil of Jordan, Isotopes, Enviro. Health. Stud (2019) 211-226.
  8. H.D. Van, T.D. Nguyen, A. Peka, M. Hegedus, A. Csordas, T. Kovacs, Study of soil to plant transfer factors of 226Ra, 232Th, 40K and 137Cs in Vietnamese crops, J. Environ. Radioact. 223-224 (2020), 106416.
  9. M. Tufail, N. Akhtar, M. Waqaus, Measurement of terrestrial radiation for assessment of gamma dose from cultivated and barren saline soils of Faisalabad in Pakistan, Radiat. Meas. 41 (2006) 443-451. https://doi.org/10.1016/j.radmeas.2005.10.007
  10. M. Kefalati, S.F. Masoudi, A. Abbasi, Effect of human body position on gamma radiation dose rate from granite stones, J. Environ. Health Sci. Engineer. 19 (2021) 933-939. https://doi.org/10.1007/s40201-021-00660-7
  11. A. Abbasi, S.F. Mirekhtiary, Risk assessment due to various terrestrial radionuclides concentrations scenarios, Int. J. Radiat. Biol. 95 (2019) 179-185. https://doi.org/10.1080/09553002.2019.1539881
  12. A. Abbasi, F. Mirekhtiary, S. Turhan, A. Kurnaz, Y.S. Rammaah, Spatial distribution and health risk assessment in urban surface soils of Mediterranean Sea region, Cyprus Island, Arabian J. Geosci. 15 (2022).
  13. A. Abbasi, F. Mirekhtiary, Heavy metals and natural radioactivity concentration in sediments of the Mediterranean Sea coast, Mar. Pollut. Bull. 154 (2020), 11041.
  14. A. Abbasi, H.M.H. Zakaly, M. Algethami, S.H. Abdel-Hafez, Radiological risk assessment of natural radionuclides in the marine ecosystem of the Northwest Mediterranean Sea, Int. J. Radiat. Biol. 98 (2022) 205-211. https://doi.org/10.1080/09553002.2022.2020359
  15. M.H. Lee, C.W. Lee, K.H. Hong, Y.H. Choi, S.B. Kim, D.W. Park, J.H. Lee, A study on distribution of Cs-137 and Sr-90, in: soils around Daejon. Reg, J Korean Asso, Radiat. Prot. 20 (1995) 123-128.
  16. UNSCEAR, Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations, New York, 2000.
  17. M. Aoyama, Y. Hamajima, M. Hult, M. Uematsu, E. Oka, D. Tsumune, Y. Kumamoto, 134Cs and 137Cs in the North Pacific ocean derived from the March 2011 TEPCO Fukushima Dai-ichi nuclear power plant accident, Japan. Part one: surface pathway and vertical distributions, J. Oceanogr. 72 (2016) 53-65. https://doi.org/10.1007/s10872-015-0335-z
  18. M.D. Cort, G. Dubois, S.D. Fridman, M.G. Germenchuk, Y.A. Izrael, A. Janssens, A.R. Jones, G.N. Kelly, E.V. Kvasnikove, I.I. Matveenko, I.M. Nazarov, Y.M. Pokuneiko, V.A. Sitak, E.D. Stukin, L.Y. Tabachny, Y.S. Tsaturov, S.I. Avdyushin, Atlas of Caesium Deposition on Europe after the Chernobyl Accident, Office for Official Publications of the European Communities, Luxembourg, 1998, pp. 1-63. ISBN 92-828-3140-X, Catalogue number CG-NA-16-733-29C. EUR 16733.
  19. International standard, ISO 18589-3, Measurement of Radioactivity in the Environment-Soil-Part 3: Test Method of Gamma-Emitting Radionuclides Using Gamma-Ray Spectrometry, 2015.
  20. Big data Open platform. Korea Institute of Geoscience and Mineral Resources. https://data.kigam.re.kr/mgeo/map/main.do?process=geology_250k/ (accessed 6 April 2021).
  21. R. Veiga, N. Sanches, R.M. Anjos, K. Macario, J. Bastos, M. Iguatemy, J.G. Aguiar, A.M.A. Santos, B. Mosquera, C. Carvalho, M.B. Fillho, N.K. Umisedo, Measurement of natural radioactivity in Brazilian beach sands, Radiat. Meas. 41 (2006) 189-196. https://doi.org/10.1016/j.radmeas.2005.05.001
  22. N.N. Jibiri, I.C. Okeyode, Evaluation of radiological hazards in the sediments of Ogun river, South-Western Nigeria, Radiat. Phys. Chem. 81 (2012) 103-112. https://doi.org/10.1016/j.radphyschem.2011.10.002
  23. P. Bangotra, R. Mehra, R. Jakhu, K. Kaur, P. Pandit, S. Kanse, Estimation of 222Rn exhalation rate and assessment of radiological risk from activity concentration of 226Ra, 232Th and 40K, J. Geochem. Explor. 184 (2018) 304-310. https://doi.org/10.1016/j.gexplo.2017.05.002
  24. KINS, Environmental Radioactivity Survey in Korea, Korea Institute of Nuclear Safety, Korea, 2017. http://nsic.nssc.go.kr/rad/environRadiation.do/. (Accessed 8 April 2021).
  25. KINS, Environmental Radioactivity Survey in Korea, Korea Institute of Nuclear Safety, Korea, 2018. http://nsic.nssc.go.kr/rad/environRadiation.do/. (Accessed 8 April 2021).
  26. KINS, Environmental Radioactivity Survey in Korea, Korea Institute of Nuclear Safety, Korea, 2019. http://nsic.nssc.go.kr/rad/environRadiation.do/. (Accessed 8 April 2021).
  27. M. Abbaspour, F. Moattar, A. Okkhovatian, M.K. Sadeghi, Relationship of soil terrestrial radionuclide concentrations and the excess of lifetime cancer risk in western Mazandaran province, Iran, Radiat. Protect. Dosim. 142 (2010) 265-272. https://doi.org/10.1093/rpd/ncq187
  28. N.M. Antovic, D.S. Boskovic, N.R. Svrkota, I.M. Natovic, Radioactivity in soil from Mojkovac, Montenegro and assessment of radiological and cancer risk, Nucl. Technol. Radiat. Protect. 27 (2012) 57-63. https://doi.org/10.2298/NTRP1201057A
  29. S. Dizman, F.K. Gorur, R. Keser, Determination of radioactivity levels of soil samples and the excess of lifetime cancer risk in Rize province, Trukey, IJRR 14 (2016).
  30. H. Lee, K.H. Moon, J.S. Kim, J.K. Ahn, H.C. Kim, Distribution of some environmental radionuclides in rocks and soils of Guemjeong-Gu area in Busan, Korea, Jour. Petrol. Soc. Korea 17 (2008) 179-190.