DOI QR코드

DOI QR Code

ENERGY DECAY FOR A VISCOELASTIC EQUATION WITH BALAKRISHNAN-TAYLOR DAMPING INVOLVING INFINITE MEMORY AND NONLINEAR TIME-VARYING DELAY TERMS IN DYNAMICAL BOUNDARY

  • Soufiane Benkouider (Laboratory of Pure and Applied Mathematics Amar Telidji University) ;
  • Abita Rahmoune (Department of Technical Sciences Laboratory of Pure and Applied Mathematics Amar Telidji University)
  • 투고 : 2022.07.30
  • 심사 : 2023.02.07
  • 발행 : 2023.07.31

초록

In this paper, we study the initial-boundary value problem for viscoelastic wave equations of Kirchhoff type with Balakrishnan-Taylor damping terms in the presence of the infinite memory and external time-varying delay. For a certain class of relaxation functions and certain initial data, we prove that the decay rate of the solution energy is similar to that of relaxation function which is not necessarily of exponential or polynomial type. Also, we show another stability with g satisfying some general growth at infinity.

키워드

과제정보

The authors would like to thank the anonymous referees and the handling editor for their remarks and suggestions.

참고문헌

  1. A. V. Balakrishnan and L. W. Taylor, Distributed parameter nonlinear damping models for flight structure, Damping 89, Flight Dynamics Lab and Air Force Wright Aeronautral Labs, WPAFB. 1989.
  2. R. W. Bass and D. Zes, Spillover nonlinearity and flexible structures, Proceedings of the 30th Conference on Decision and Control Brighton. England. - December. (l991), pp. 1-14.
  3. Q. Dai and Z. F. Yang, Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay, Z. Angew. Math. Phys. 65 (2014), no. 5, 885-903. https://doi.org/10.1007/s00033-013-0365-6
  4. R. F. Datko, J. E. Lagnese, and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim. 24 (1986), no. 1, 152-156. https://doi.org/10.1137/0324007
  5. M. Fabrizio, C. Giorgi, and V. Pata, A new approach to equations with memory, Arch. Ration. Mech. Anal. 198 (2010), no. 1, 189-232. https://doi.org/10.1007/s00205-010-0300-3
  6. P. J. Graber and B. Said-Houari, On the wave equation with semilinear porous acoustic boundary conditions, J. Differential Equations 252 (2012), no. 9, 4898-4941. https://doi.org/10.1016/j.jde.2012.01.042
  7. A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory, J. Math. Anal. Appl. 382 (2011), no. 2, 748-760. https://doi.org/10.1016/j.jmaa.2011.04.079
  8. A. Guesmia, Well-posedness and exponential stability of an abstract evolution equation with infinite memory and time delay, IMA J. Math. Control Inform. 30 (2013), no. 4, 507-526. https://doi.org/10.1093/imamci/dns039
  9. J. Hao and F. Wang, Energy decay in a Timoshenko-type system for thermoelasticity of type III with distributed delay and past history, Electron. J. Differential Equations 2018 (2018), Paper No. 75, 27 pp.
  10. J. Hao and F. Wang, General decay rate for weak viscoelastic wave equation with Balakrishnan-Taylor damping and time-varying delay, Comput. Math. Appl. 78 (2019), no. 8, 2632-2640. https://doi.org/10.1016/j.camwa.2019.04.010
  11. J.-R. Kang, M. J. Lee, and S. H. Park, Asymptotic stability of a viscoelastic problem with Balakrishnan-Taylor damping and time-varying delay, Comput. Math. Appl. 74 (2017), no. 6, 1506-1515. https://doi.org/10.1016/j.camwa.2017.06.033
  12. M. J. Lee, J. Y. Park, and Y. H. Kang, Asymptotic stability of a problem with Balakrishnan-Taylor damping and a time delay, Comput. Math. Appl. 70 (2015), no. 4, 478-487. https://doi.org/10.1016/j.camwa.2015.05.004
  13. G. Li, D. Wang, and B. Zhu, Well-posedness and decay of solutions for a transmission problem with history and delay, Electron. J. Differential Equations 2016 (2016), Paper No. 23, 21 pp.
  14. W. J. Liu, K. Chen, and J. Yu, Asymptotic stability for a non-autonomous full von K'arm'an beam with thermo-viscoelastic damping, Appl. Anal. 97 (2018), no. 3, 400-414. https://doi.org/10.1080/00036811.2016.1268688
  15. W. J. Liu and W. Zhao, Stabilization of a thermoelastic laminated beam with past history, Appl. Math. Optim. 80 (2019), no. 1, 103-133. https://doi.org/10.1007/s00245-017-9460-y
  16. C. L. Mu and J. Ma, On a system of nonlinear wave equations with Balakrishnan-Taylor damping, Z. Angew. Math. Phys. 65 (2014), no. 1, 91-113. https://doi.org/10.1007/s00033-013-0324-2
  17. M. I. S. A. Mustafa, Asymptotic behavior of second sound thermoelasticity with internal time-varying delay, Z. Angew. Math. Phys. 64 (2013), no. 4, 1353-1362. https://doi.org/10.1007/s00033-012-0268-y
  18. S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim. 45 (2006), no. 5, 1561-1585. https://doi.org/10.1137/060648891
  19. S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay, Electron. J. Differential Equations 2011 (2011), No. 41, 20 pp.
  20. S. Nicaise, J. Valein, and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays, Discrete Contin. Dyn. Syst. Ser. S 2 (2009), no. 3, 559-581. https://doi.org/10.3934/dcdss.2009.2.559
  21. S. H. Park, Arbitrary decay of energy for a viscoelastic problem with Balakrishnan-Taylor damping, Taiwanese J. Math. 20 (2016), no. 1, 129-141. https://doi.org/10.11650/tjm.20.2016.6079
  22. S. H. Park, Energy decay for a von Karman equation with time-varying delay, Appl. Math. Lett. 55 (2016), 10-17. https://doi.org/10.1016/j.aml.2015.11.006
  23. C. Pignotti, Stability results for second-order evolution equations with memory and switching time-delay, J. Dynam. Differential Equations 29 (2017), no. 4, 1309-1324. https://doi.org/10.1007/s10884-016-9545-3
  24. N. Tatar and A. Zarai, Exponential stability and blow up for a problem with Balakrishnan-Taylor damping, Demonstratio Math. 44 (2011), no. 1, 67-90. https://doi.org/10.1515/dema-2013-0297
  25. A. Zarai and N. Tatar, Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping, Arch. Math. (Brno) 46 (2010), no. 3, 157-176.