DOI QR코드

DOI QR Code

근전전동의수의 파지력 및 내구성 시험 표준 개발

Development of gripping force and durability test standard for myoelectric prosthetic hand

  • 차국찬 (근로복지공단 재활공학연구소) ;
  • 최기원 (근로복지공단 재활공학연구소) ;
  • 이석민 (근로복지공단 재활공학연구소) ;
  • 박상수 (을지대학교 의료공학과)
  • 투고 : 2023.06.19
  • 심사 : 2023.07.10
  • 발행 : 2023.07.31

초록

상지 절단 장애인은 미관 목적과 기능적 필요성에 의하여 상지 의지를 착용하며, 특히 양손 절단자인 경우 잡는 동작 즉 파지동작이 가능한 근전 전동의수의 착용이 필수적이다. 잔존 근육의 근전도 신호에 의하여 작동하는 근전 전동의수는 산업재해보상보험의 공적보험 급여 품목이며, 사용자의 안전과 제품 성능의 유효성에 대한 시험 방법 표준의 개발이 필요하다. 본 연구에서는 상지 전동의수의 잡는 힘 즉 파지력을 로드셀을 이용하여 측정하고 반복 동작으로 인한 내구성을 근접센서를 이용하여 시험하기 위한 내구성 시험 장치를 개발하고 그 시험 방법의 표준을 제안한다. 아직까지 국제 표준화 기구 ISO(International Standardization Organization)의 시험 표준이 제정되지 않은 상태이므로 향후 전동의수 시험 표준 분야에서 한국의 선도적인 역할을 할 수 있을 것으로 기대된다.

Upper limb amputees wear an upper limb prosthesis for both aesthetic purposes and functional necessity, and in particular, in the case of amputee with both hands, it is essential to wear a myoelectric prosthetic hand capable of gripping action. The prosthetic hand operated by the EMG signal of the remaining muscles is a public insurance benefit item of the Industrial Accident Compensation Insurance, and test method standards are needed to be developed for the safety of the user and the effectiveness of the product performance. In this study, we developed systems for measuring the gripping force of myoelectric hand prosthesis by a load cell and for durability test of the prosthesis over repeated use with a proximity sensor, and propose a test method standard. Since the international test method standard has not yet been established, it is expected that Korea will be able to play a leading role in this standardization field in the future.

키워드

과제정보

본 연구는 산업통상자원부의 의료기기분야 국제표준 선점을 위한 TC연계 협력 기반 조성사업(20016280) 지원으로 연구되었음.

참고문헌

  1. S. Lee, K. Choi, I. H. Moon, S. Park. "International Trends in Wheelchair Power Assist Add-ons Development," The Journal of the Convergence on Culture Technology (JCCT), Vol. 9. No. 2, pp. 143-150, 2023. http://dx.doi.org/10.17703/JCCT.2023.9.2.141. 
  2. H. Yeom, H. W. Jeong, S. Park. "A Study on the History of the Korean Medical Device Industry and its Global Competitiveness," The Journal of the Convergence on Culture Technology (JCCT), Vol. 8, No. 5, pp. 1-7, 2022. http://dx.doi.org/10.17703/JCCT.2022.8.5.1. 
  3. H. Yeom, C. H., Park, & S. Park. "Medical Bed with Integrated Toilet: Design Considerations and Utilization by a Bedridden Patient," Health and Technology, Vol. 9, No. 5, pp.903-907, 2019. DOI:10.1007/s12553-019-00340-5. 
  4. H. W Jeong, H. W. Choi, H. Jung, K. H. Kim & S. Park. "An Automatic Urine Disposal System for Urinary Incontinence: A Pilot Study with Long-term Users for Effectiveness and Safety," Technology and Health Care, Vol. 24, No. 5, pp. 753-760, 2016. DOI: 10.3233/THC-161156. 
  5. D. van der Riet, R. Stopforth, G Bright, & O. Diegel. "The Low Cost Design of a 3D Printed Multi-fingered Myoelectric Prosthetic Hand," Mechatronics: Principles, Technologies and Applications, pp. 85-117, 2015. 
  6. N. V. Iqbal, & K. Subramaniam. "A Review on Upper-Limb Myoelectric Prosthetic Control," IETE Journal of Research, Vol. 64, No. 6, pp. 740-752, 2018.  https://doi.org/10.1080/03772063.2017.1381047
  7. H. J. Yoo, S. Lee, J. Kim, C. Park, & B. Lee. "Development of 3D-printed Myoelectric Hand Orthosis for Patients with Spinal Cord Injury," Journal of Neuroengineering and Rehabilitation, Vol. 16, No. 1, pp. 1-14, 2019. DOI:10.1186/s12984-019-0633-6. 
  8. S. H Park, B. K. Hong, J. K. Kim, E. P. Hong, & M. S. Mun. "Development of the Myoelectric Hand with a 2 DOF Auto Wrist Module," Journal of Institute of Control, Robotics and Systems, Vol. 17, No. 8, pp. 824-832, 2011. DOI:10.3390/app11167295. 
  9. S. Kim, J. Kim, B. Koo, T. Kim, H. Jung, S. Park, & Y. Kim. (2019). "Development of an Armband EMG Module and a Pattern Recogni tion Algorithm for the 5-finger Myoelectric Hand Prosthesis," International Journal of Precision Engineering and Manufacturing, Vol. 20, pp. 1997-2006. DOI: 10.5999/aps.2018.01375. 
  10. N. Ju, K. H. Lee, M. O. Kim, & Y. Choi. "A User-Driven Approach to Prosthetic Upper Limb Development in Korea," In Healthcare, Vol. 9, No. 7, p. 839, 2021. MDPI. DOI:10.3390/healthcare9070839. 
  11. S. Lee, M. Sung, & Y. Choi. "Wearable Fabric Sensor for Controlling Myoelectric Hand Prosthesis via Classification of Foot Postures," Smart Materials and Structures, Vol. 29, No. 3, 035004, 2020. DOI:10.1088/1361-665X/ab6690. 
  12. K. T. Kim, S. Park, T. H. Lim, & S. J. Lee. "Upper-limb Electromyogram Classification of Reaching-to-grasping Tasks Based on Convolutional Neural Networks for Control of a Prosthetic Hand," Frontiers in Neuroscience, Vol. 15, 733359, 2021. DOI:10.3389/fnins.2021.733359. 
  13. TC 168. (n.d). Standards by ISO/TC 168. International Standardization Organization. Retrieved June 19, 2023, from https://www.iso.org/committee/53630/x/catalogue/p/1/u/0/w/0/d/0. 
  14. TC 168. (n.d). Standard and/or project under the direct responsibility of ISO/TC 168 Secretariat. International Standardization Organization. Retrieved June 19, 2023, from https://www.iso.org/committee/53630/x/catalogue/p/0/u/1/w/0/d/0. 
  15. A.] Kargov, C. Pylatiuk, J. Martin, S. Schulz,, & L. Doderlein. "A Comparison of the Grip Force Distribution in Natural Hands and in Prosthetic Hands," Disability and Rehabilitation, Vol. 26, No. 12, pp. 705-711, 2004. doi.org/10.1080/09638280410001704278