Acknowledgement
This work was supported by a grant from 2022 Research Fund of Andong National University
References
- Anatolyev S and Kosenok G (2005). An alternative to maximum likelihood based on spacings, Econometric Theory, 21, 472-476. https://doi.org/10.1017/S0266466605050255
- Basu S, Singh SK, and Singh U (2017). Parameter estimation of inverse Lindley distribution for Type-I censored data, Computational Statistics, 32, 367-385. https://doi.org/10.1007/s00180-016-0704-0
- Basu S, Singh SK, and Singh U (2018). Bayesian inference using product of spacings function for progressive hybrid Type-I censoring scheme, Statistics, 52, 345-363. https://doi.org/10.1080/02331888.2017.1405419
- Cousineau D (2009). Fitting the three-parameter Weibull distribution: Review and evaluation of existing and new methods, IEEE Transactions on Dielectrics and Electrical Insulation, 16, 281-288. https://doi.org/10.1109/TDEI.2009.4784578
- Cheng RCH and Amin NAK (1983). Estimating parameters in continuous univariate distributions with a shifted origin, Journal of the Royal Statistical Society: Series B (Methodological), 45, 394-403. https://doi.org/10.1111/j.2517-6161.1983.tb01268.x
- Ekstrom M (1998). On the consistency of the maximum spacing method, Journal of Statistical Planning and Inference, 70, 209-224. https://doi.org/10.1016/S0378-3758(97)00185-7
- Gallagher MA and Moore AH (1990). Robust minimum-distance estimation using the 3-parameter Weibull distribution, IEEE Transactions on Reliability, 39, 575-580. https://doi.org/10.1109/24.61314
- Hooke R and Jeeves TA (1961). "Direct search" solution of numerical and statistical problems, Journal of the Association for Computing Machinery, 8, 212-229. https://doi.org/10.1145/321062.321069
- Hobbs JR, Moore AH, and James W (1984). Minimum distance estimation of the three parameters of the gamma distribution, IEEE Transactions on Reliability, 33, 237-240. https://doi.org/10.1109/TR.1984.5221799
- Hobbs JR, Moore AH, and Miller RM (1985). Minimum-distance estimation of the parameters of the 3-parameter Weibull distribution, IEEE Transactions on Reliability, 34, 495-496. https://doi.org/10.1109/TR.1985.5222242
- Jeon YE, Kang SB, and Seo JI (2022). Maximum product of spacings under a generalized Type-II progressive hybrid censoring scheme, Communications for Statistical Applications and Methods, 29, 665-677. https://doi.org/10.29220/CSAM.2022.29.6.665
- Pitman EJG (1979). Some Basic Theory for Statistical Inference, Chapman and Hall, London.
- Pakyari R and Balakrishnan N (2012). A general purpose approximate goodness-of-fit test for progressively Type-II censored data, IEEE Transactions on Reliability, 61, 238-244. https://doi.org/10.1109/TR.2012.2182811
- Ranneby B (1984). The maximum spacing method: An estimation method related to the maximum likelihood method, Scandinavian Journal of Statistics, 11, 93-112.
- Shao Y and Hahn MG (1999). Maximum product of spacings method: A unified formulation with illustration of strong consistency, Illinois Journal of Mathematics, 43, 489-499. https://doi.org/10.1215/ijm/1255985105
- Seo JI, Jeon YE, and Kang SB (2020). New approach for a Weibull distribution under the progressive Type-II censoring scheme, Mathematics, 8, 1713.
- Singh RK, Kaushik A, Singh SK, and Singh U (2018). Product spacings for the estimation of the parameters of the exponentiated Pareto distribution, International Journal of Applied Mathematics & Statistics, 57, 79-95.
- Singh U, Singh SK, and Singh RK (2014). A comparative study of traditional estimation methods and maximum product spacings method in generalized inverted exponential distribution, Journal of Statistics Applications & Probability, 3, 153-169. https://doi.org/10.12785/jsap/030206
- Xia ZP, Yu JY, Cheng LD, Liu LF, and Wang WM (2009). Study on the breaking strength of jute fibres using modified Weibull distribution, Composites Part A: Applied Science and Manufacturing, 40, 54-59. https://doi.org/10.1016/j.compositesa.2008.10.001