DOI QR코드

DOI QR Code

Influence of Composition of Layer Layout on Bending and Compression Strength Performance of Larix Cross-Laminated Timber (CLT)

  • Da-Bin SONG (Forest Products and Industry Department, National Institute of Forest Science) ;
  • Keon-Ho KIM (Forest Products and Industry Department, National Institute of Forest Science)
  • 투고 : 2023.03.07
  • 심사 : 2023.07.05
  • 발행 : 2023.07.25

초록

In this study, bending and compression strength tests were performed to investigate effect of composition of layer layout of Larix cross-laminated timber (CLT) on mechanical properties. The Larix CLT consists of five laminae, and specimens were classified into four types according to grade and composition of layer. The layer's layout were composited as follows 1) cross-laminating layers in major and minor direction (Type A), and 2) cross-laminating external layer in major direction and internal layer applied grade of layer in minor direction (Type B). E12 and E16 were used as grades of lamina for major direction layer of Type A and external layer of Type B according to KS F 3020. In results of the bending test of CLT using same grade layer according to layer composition, the modulus of elasticity (MOE) of Type B was higher than Type A. In case of prediction of bending MOE of Larix CLT, the experimental MOE was higher than 1.00 to 1.09 times for Shear analogy method and 1.14 to 1.25 times for Gamma method. Therefore, it is recommended to predict the bending MOE for Larix CLT by shear analogy method. Compression strength of CLT in accordance with layer composition was measured to be 2% and 9% higher for Type A using E12 and E16 layers than Type B, respectively. In failure mode of Type A, progress direction of failure generated under compression load was confirmed to transfer from major layer to minor layer by rolling shear or bonding line failure due to the middle lamina in major direction.

키워드

과제정보

This research was supported by a Research Project (FP0200-2021-01-2023) through the National Institute of Forest Science (NIFoS), Korea.

참고문헌

  1. Ahn, K.S., Pang, S.J., Oh, J.K. 2021. Prediction of with-drawal resistance of single screw on Korean wood products. Journal of the Korean Wood Science and Technology 49(1): 93-102. https://doi.org/10.5658/WOOD.2021.49.1.93
  2. American National Standards Institute [ANSI], The Engineered Wood Association [APA]. 2019. Standard for Performance-Rated Cross-Laminated Timber. ANSI/APA PRG 320. The Engineered Wood Association, Tacoma, WA, USA.
  3. American Society for Testing and Materials [ASTM]. 2015. Standard Test Methods of Static Tests of Lumber in Structural Sizes. ASTM D198-08. American National Standards Institute, Washington, DC, USA.
  4. Bano, V., Godoy, D., Figueredo, D., Vega, A. 2018. Characterization and structural performance in bending of CLT panels made from small-diameter logs of loblolly/slash pine. Materials 11(12): 2436.
  5. Buck, D., Wang, X., Hagman, O., Gustafsson, A. 2016. Bending properties of cross laminated timber (CLT) with a 45° alternating layer configuration. BioResources 11(2): 4633-4644. https://doi.org/10.15376/biores.11.2.4633-4644
  6. Ceccotti, A., Sandhaas, C., Okabe, M., Yasumura, M., Minowa, C., Kawai, N. 2013. SOFIE project: 3D shaking table test on a seven-storey full-scale cross-laminated timber building. Earthquake Engineering & Structural Dynamics 42(13): 2003-2021. https://doi.org/10.1002/eqe.2309
  7. Chang, S.J., Wi, S., Lee, J., Lee, H., Cho, H., Kim, S. 2017. Analysis of cooling and heating energy demands of wooden houses with cross-laminated timber (CLT) using domestic plywood as core materials. Journal of the Korean Society of Living Environmental System 24(6): 752-759. https://doi.org/10.21086/ksles.2017.12.24.6.752
  8. Choi, C., Kojima, E., Kim, K., Yamasaki, M., Sasaki, Y., Kang, S. 2018. Analysis of mechanical properties of cross-laminated timber (CLT) with plywood using Korean larch. BioResources 13(2): 2715-2726. https://doi.org/10.15376/biores.13.2.2715-2726
  9. Choi, G.W., Yang, S.M., Lee, H.J., Kim, J.H., Choi, K.H., Kang, S.G. 2020. A study on the block shear strength according to the layer composition of and adhesive type of ply-lam CLT. Journal of the Korean Wood Science and Technology 48(6): 791-806. https://doi.org/10.5658/WOOD.2020.48.6.791
  10. Choi, G.W., Yang, S.M., Lee, H.J., Kim, J.H., Choi, K.H., Kang, S.G. 2021. Evaluation of flexural performance according to the plywood bonding method of ply-lam CLT. Journal of the Korean Wood Science and Technology 49(2): 107-121. https://doi.org/10.5658/WOOD.2021.49.2.107
  11. Crovella, P., Smith, W., Bartczak, J. 2019. Experimental verification of shear analogy approach to predict bending stiffness for softwood and hardwood cross-laminated timber panels. Construction and Building Materials 229: 116895.
  12. Ettelaei, A., Taoum, A., Shanks, J., Lee, M., Nolan, G. 2022. Evaluation of the bending properties of novel cross-laminated timber with different configurations made of Australian plantation Eucalyptus nitens using experimental and theoretical methods. Structures 42: 80-90. https://doi.org/10.1016/j.istruc.2022.06.002
  13. European Standards [EN]. 2014. Timber Structures: Cross Laminated Timber - Requirements. EN 16351. European Committee for Standardization (CEZ), Brussels, Belgium.
  14. Fujimoto, Y., Tanaka, H., Morita, H., Kang, S.G. 2021. Development of ply-lam composed of Japanese cypress laminae and Korean larch plywood. Journal of the Korean Wood Science and Technology 49(1): 57-66. https://doi.org/10.5658/WOOD.2021.49.1.57
  15. Galih, N.M., Yang, S.M., Yu, S.M., Kang, S.G. 2020. Study on the mechanical properties of tropical hybrid cross laminated timber using bamboo laminated board as core layer. Journal of the Korean Wood Science and Technology 48(2): 245-252. https://doi.org/10.5658/WOOD.2020.48.2.245
  16. Gong, Y., Liu, F., Tian, Z., Wu, G., Ren, H., Guan, C. 2019. Evaluation of mechanical properties of cross-laminated timber with different lay-ups using Japanese larch. Journal of Renewable Materials 7(10): 941-956. https://doi.org/10.32604/jrm.2019.07354
  17. He, M., Sun, X., Ren, H., Li, Z., Feng, W. 2021. Experimental study on the system effect of bending cross-laminated timber fabricated with Karamatsu larch. Construction and Building Materials 299: 124271.
  18. Hematabadi, H., Madhoushi, M., Khazaeian, A., Ebrahimi, G. 2021. Structural performance of hybrid poplar-beech cross-laminated-timber (CLT). Journal of Building Engineering 44: 102959.
  19. Japanese Agricultural Standards [JAS]. 2013. Cross Laminated Timber. JAS 3079. Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan.
  20. Jiang, Y., Crocetti, R. 2019. CLT-concrete composite floors with notched shear connectors. Construction and Building Materials 195: 127-139. https://doi.org/10.1016/j.conbuildmat.2018.11.066
  21. Jung, H., Song, Y., Hong, S. 2020. Effect of glass fiber-reinforced connection on the horizontal shear strength of CLT walls. Journal of the Korean Wood Science and Technology 48(5): 685-695. https://doi.org/10.5658/WOOD.2020.48.5.685
  22. Kang, C.W., Kim, N.H., Kim, B.R., Kim, Y.S., Byeon, H.S., So, W.T., Yeo, H.M., Oh, S.W., Lee, W.H., Lee, H.H. 2008. New Wood Physics and Mechanics. Hyangmunsa, Seoul, Korea. pp. 289-293.
  23. Kim, K. 2020. Influence of layer arrangement on bonding and bending performances of cross-laminated timber using two different species. BioResources 15(3): 5328-5341. https://doi.org/10.15376/biores.15.3.5328-5341
  24. Korean Standards Association [KSA]. 2018. Softwood Structural Lumber. KS F 3020. Korean Standards Association, Seoul, Korea.
  25. Korean Standards Association [KSA]. 2021. Cross Laminated Timber. KS F 2081. Korean Standards Association, Seoul, Korea.
  26. Lee, H.W., Jang, S.S., Kang, C.W. 2021. Evaluation of withdrawal resistance of screw-type fasteners depending on lead-hole size, grain direction, screw size, screw type and species. Journal of the Korean Wood Science and Technology 49(2): 181-190. https://doi.org/10.5658/WOOD.2021.49.2.181
  27. Lee, I.H., Kim, K., Shim, K. 2022. Evaluation of bearing strength of self-tapping screws according to the grain direction of domestic Pinus densiflora. Journal of the Korean Wood Science and Technology 50(1): 1-11. https://doi.org/10.5658/WOOD.2022.50.1.1
  28. Liu, Y., Guo, H., Sun, C., Chang, W.S. 2016. Assessing cross laminated timber (CLT) as an alternative material for mid-rise residential buildings in cold regions in China: A life-cycle assessment approach. Sustainability 8(10): 1047.
  29. Muszynski, L., Gupta, R., Hong, S., Osborn, N., Pickett, B. 2019. Fire resistance of unprotected cross-laminated timber (CLT) floor assemblies produced in the USA. Fire Safety Journal 107: 126-136. https://doi.org/10.1016/j.firesaf.2018.12.008
  30. Nocetti, M., Brancheriau, L., Bacher, M., Brunetti, M., Crivellaro, A. 2013. Relationship between local and global modulus of elasticity in bending and its consequence on structural timber grading. European Journal of Wood and Wood Products 71(3): 297-308. https://doi.org/10.1007/s00107-013-0682-7
  31. Pang, S.J., Jeong, G.Y. 2019. Effects of combinations of lamina grade and thickness, and span-to-depth ratios on bending properties of cross-laminated timber (CLT) floor. Construction and Building Materials 222: 142-151. https://doi.org/10.1016/j.conbuildmat.2019.06.012
  32. Pangh, H., Hosseinabadi, H.Z., Kotlarewski, N., Moradpour, P., Lee, M., Nolan, G. 2019. Flexural performance of cross-laminated timber constructed from fibre-managed plantation eucalyptus. Construction and Building Materials 208: 535-542. https://doi.org/10.1016/j.conbuildmat.2019.03.010
  33. Ravenshorst, G.J.P., van de Kuilen, J.W.G. 2009. Relationships between local, global and dynamic modulus of elasticity for soft- and hardwoods. In: Dubendorf, Switzerland, Meeting Forty Two International Council for Research and Innovation in Building and Construction, Working Commission W18: Timber Structures, pp. 1-11.
  34. Sikora, K.S., McPolin, D.O., Harte, A.M. 2016. Effects of the thickness of cross-laminated timber (CLT) panels made from Irish Sitka spruce on mechanical performance in bending and shear. Construction and Building Materials 116: 141-150. https://doi.org/10.1016/j.conbuildmat.2016.04.145
  35. Song, D., Kim, K. 2022. Influence of manufacturing environment on delamination of mixed cross laminated timber using polyurethane adhesive. Journal of the Korean Wood Science and Technology 50(3): 167-178. https://doi.org/10.5658/WOOD.2022.50.3.167
  36. Song, Y.J., Hong, S.I. 2018. Performance evaluation of the bending strength of larch cross-laminated timber. Wood Research 63(1): 105-116.
  37. Tian, Z., Gong, Y., Xu, J., Li, M., Wang, Z., Ren, H. 2022. Predicting the average compression strength of CLT by using the average density or compressive strength of lamina. Forests 13(4): 591.
  38. Trisatya, D.R., Santoso, A., Abdurrachman, A. 2023. Performance of six-layered cross laminated timber of fast-growing species glued with tannin resorcinol formaldehyde. Journal of the Korean Wood Science and Technology 51(2): 81-97.
  39. Yang, S.M., Lee, H.H., Kang, S.G. 2021. Research trends in hybrid cross-laminated timber (CLT) to enhance the rolling shear strength of CLT. Journal of the Korean Wood Science and Technology 49(4): 336-359. https://doi.org/10.5658/WOOD.2021.49.4.336
  40. Yoo, D., Lee, T. 2019. Analysis of energy performance and structure of wooden passive houses using CLT in overseas. KIEAE Journal 19(5): 101-107. https://doi.org/10.12813/kieae.2019.19.5.101