DOI QR코드

DOI QR Code

Novel filter approach for ripple-free input current boost converters based on variable inductors

  • He Liu (School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology) ;
  • Lu Qu (School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology) ;
  • Qiang Tong (School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology) ;
  • Gaozhi Jia (School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology)
  • Received : 2022.08.26
  • Accepted : 2023.02.01
  • Published : 2023.07.20

Abstract

A coupled inductor filter (CIF) is a good candidate for reducing current ripple, and improving the power density of switching power. However, because the resonance frequency of its series branch is easily affected by non-ideal factors, such as the inductance production process, ambient temperature, device aging, among others, it is usually unable to optimize its effect in practice. To solve this problem, by considering the ripple-free input current boost converter as an example, this paper proposes a novel method that adds a variable inductor (VI) into the AC resonant branch of a CIF. The value of the VI is adjusted online to optimize the ripple cancellation effect by comparing the peak-to-peak current ripples in the main power inductor and the AC branch inductor. In the aforementioned scheme, the voltage-controlled current source (VCCS) in the closed loop control circuit is critical for achieving a rapid and stable regulation of the VI. Therefore, a 1/∛s compensator is adopted to provide a sufficient stability margin under various operating conditions. Finally, the input characteristics of a 500 W boost converter are measured and presented in this study. The obtained results demonstrate that the total inductor current ripple peak-to-peak values at each operating point are within 85 mA, which confirms the correctness of the theoretic analyses.

Keywords

Acknowledgement

This work is supported by the Guangdong Regional Joint Fund - Youth Fund Project Fund No.: 2020A1515111136. Guangdong Innovation Project of Colleges No.: 2022KTSCX312. Doctoral Research Start-Up Project of SZIIT No.: SZIIT2022KJ068. And Natural Science Foundation of Shenzhen No.: 20200828191356001.

References

  1. Quinn, C., Rinne, K., Donnell, T.-O., et al.: A review of planar magnetic techniques and technologies. In: IEEE Applied Power Electronics Conference and Exposition, pp. 1175-1183 (2001)
  2. Barry, B.-C., Hayes, J.-G., Rylko, M.-S., et al.: Small-signal model of the two-phase interleaved coupled-inductor Boost converter. IEEE Trans. Power Electron. 33(9), 8052-8064 (2018) https://doi.org/10.1109/TPEL.2017.2765920
  3. Liu, H., Zhang, D.-L.: Two-phase interleaved inverse-coupled inductor Boost without right half-plane zeros. IEEE Trans. Power Electron. 32(3), 1844-1859 (2017)
  4. Yang, Y.-G., Guan, T.-T., Zhang, S.-Q., et al.: More symmetric four-phase inverse coupled inductor for low current ripples & high-efficiency interleaved bidirectional Buck/Boost converter. IEEE Trans. Power Electron. 33(3), 1952-1966 (2018) https://doi.org/10.1109/TPEL.2017.2745686
  5. Nupur, S.N.: Maximizing ripple cancellation in input current for SIDO Boost converter by design of coupled inductors. IEEE J. Emerg. Sel. Top. Power Electr. 2(4), 409-419 (2021) https://doi.org/10.1109/JESTIE.2021.3078266
  6. Sarani, S., Zarchi, H.-A., Delavaripour, H.: Ripple-free input current Flyback converter using a simple passive circuit. IEEE Trans. Ind. Electron. 69(3), 2557-2564 (2022) https://doi.org/10.1109/TIE.2021.3065624
  7. Zhu, H.-Y., Zhang, D.-L., Zhou, T.-L., et al.: Integrated magnetic Buck-Boost converter with "zero" output current ripple. IEEE Trans. Ind. Electron. 68(7), 5821-5832 (2021) https://doi.org/10.1109/TIE.2020.2992952
  8. Stahl, J., Albach, M.: Nonideal smoothing transformer for effective differential mode noise reduction in an SMPS. IEEE Trans. Power Electron. 29(6), 2774-2786 (2014) https://doi.org/10.1109/TPEL.2013.2272471
  9. Liu, H., Zhang, D.-L.: Design approach for coupled inductor filter in low-current-ripple input/output Boost converter. In: IEEE International Conference on Power and Renewable Energy, pp. 165-171 (2016)
  10. Wei, Y.-Q., Luo, Q.-M., Du, X., et al.: Analysis and design of the LLC resonant converter with variable inductor control based on time-domain analysis. IEEE Trans. Ind. Electron. 67(7), 5432-5443 (2020) https://doi.org/10.1109/TIE.2019.2934085
  11. Liu, J.-F., Tian, H.-L., Sun, W.-H., et al.: A study of constant frequency, non-isolated, multi-channel LED driver based on variable inductor. J. South China Univ. Technol. (Nat. Sci. Edit.) 46(10), 32-41 (2018)
  12. Zhu, X., Zhao, X., Li, Y., et al.: High-efficiency WPT system for CC/CV charging based on double-half-bridge inverter topology with variable inductors. IEEE Trans. Power Electron. 37(2), 2437-2448 (2022)
  13. Chen, Z.-X., Chen, K.-N., Xiong, X., et al.: Variable frequency interleaved parallel LLC resonant converter based on variable inductor. IEEE Electr. Mach. Control. 24(12), 97-105 (2020)
  14. Liu, H., Zhang, D.-L.: Model following average-current-mode control with 1/∛s compensator for interleaved boost converters with improved dynamic response. IET Power Electron. 10(12), 1596-1608 (2017) https://doi.org/10.1049/iet-pel.2017.0070
  15. Akhormeh, A.-R.-N., Abbaszadeh, K., Moradzadeh, M.: High-gain bidirectional quadratic DC-DC converter based on coupled inductor with current ripple reduction capability. IEEE Trans. Ind. Electron. 68(9), 7826-7837 (2021) https://doi.org/10.1109/TIE.2020.3013551
  16. Gu, Y., Zhang, D.-L., Zhang, Z.-Y.: Input/output current ripple cancellation and RHP zero elimination in a Boost converter using an integrated magnetic technique. IEEE Trans. Power Electron. 30(2), 1747-1756 (2015) https://doi.org/10.1109/TPEL.2014.2321775
  17. Balog, R.-S., Krein, P.-T.: Coupled-inductor filter: a basic filter building block. IEEE Trans. Power Electron. 28(1), 537-546 (2013) https://doi.org/10.1109/TPEL.2012.2186828
  18. Gu, Y., Zhang, D.-L., Zhang, Z.-Y.: Input current ripple cancellation technique for Boost converter using tapped inductor. IEEE Trans. Ind. Electron. 61(10), 5323-5333 (2014) https://doi.org/10.1109/TIE.2014.2300045
  19. Jin, S., Zhang, D., Qu, L., et al.: High-power high-dynamic-performance space solar array simulator using step-wave tracking output voltage approach. IEEE Trans. Power Electron. 33(5), 4102-4114 (2018) https://doi.org/10.1109/TPEL.2017.2724920
  20. Jin, S., Zhang, D., Bao, Z., et al.: High dynamic performance solar array simulator based on a SiC MOSFET linear power stage. IEEE Trans. Power Electron. 33(2), 1682-1695 (2018) https://doi.org/10.1109/TPEL.2017.2679190