DOI QR코드

DOI QR Code

Numerical Nonlinear Stability of Traveling Waves for a Chemotaxis Model

  • Min-Gi Lee (Department of Mathematics, Kyungpook National University)
  • 투고 : 2023.03.26
  • 심사 : 2023.04.20
  • 발행 : 2023.06.30

초록

We study the stability of traveling waves of a certain chemotaxis model. The traveling wave solution is a central object of study in a chemotaxis model. Kim et al. [8] introduced a model on a population and nutrient densities based on a nonlinear diffusion law. They proved the existence of traveling waves for the one dimensional Cauchy problem. Existence theory for traveling waves is typically followed by stability analysis because any traveling waves that are not robust against a small perturbation would have little physical significance. We conduct a numerical nonlinear stability for a few relevant instances of traveling waves shown to exist in [8]. Results against absolute additive noises and relative additive noises are presented.

키워드

과제정보

National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2020R1A4A1018190, 2021R1C1C1011867).

참고문헌

  1. M. Alfaro, T. Giletti, Y. -J. Kim, G. Peltier and H. Seo, On the modelling of spatially heterogeneous nonlocal diffusion: deciding factors and preferential position of individuals, J. Math. Biol., 84(2022), 1-35.
  2. L. Desvillettes, P. Laurencot, A. Trescases and M. Winkler, Weak solutions to triangular cross diffusion systems modeling chemotaxis with local sensing, Nonlinear Analysis, 226(2023), 113153.
  3. K. Fujie and J. Jiang, Boundedness of classical solutions to a degenerate Keller-Segel type model with signal-dependent motilities, Acta Appl. Math., 176(3)(2021), 1-36. https://doi.org/10.1007/s10440-021-00441-2
  4. E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theor. Biol., 30(2)(1971), 235-248. https://doi.org/10.1016/0022-5193(71)90051-8
  5. H. -Y. Kim, Y. -J. Kim and H. -J. Lim, Heterogeneous discrete kinetic model and its diffusion limit, Kinet. Relat. Models, 14(5)(2021), 749-765. https://doi.org/10.3934/krm.2021023
  6. J. Chung, Y-J Kim and M-G Lee, Random walk with heterogeneous sojourn time, arXiv preprint 2302.06275 (2023).
  7. Y-J Kim and C. Yoon, Modeling bacterial traveling wave patterns with exact cross-diffusion and population growth, Discrete Contin. Dyn. Syst. - B (2023).
  8. Y-J Kim, M. Mimura and C. Yoon, Nonlinear diffusion for bacterial traveling wave phenomenon, Bull. Math. Biol., 85(5)(2023), 27 pp.
  9. W. Lyu and Z.-A. Wang, Global classical solutions for a class of reaction-diffusion system with density-suppressed motility, Electron. res. arch., 30(3)(2022), 995-1015. https://doi.org/10.3934/era.2022052
  10. Y. Tao and M. Winkler, Global solutions to a Keller-Segel-consumption system involving singularly signal-dependent motilities in domains of arbitrary dimension, J. Differential Equations, 343(2023), 390-418.
  11. Z. -A. Wang and J. Zheng, Global boundedness of the fully parabolic Keller-Segel system with signal-dependent motilities, Acta Appl. Math., 171(2021), 1-19. https://doi.org/10.1007/s10440-020-00368-0
  12. M. Winkler, Global generalized solvability in a strongly degenerate taxis-type parabolic system modeling migration-consumption interaction, Z. Angew. Math. Phys., 74(1)(2023), 20pp.
  13. M. Winkler, Can simultaneous density-determined enhancement of diffusion and cross-diffusion foster boundedness in Keller-Segel type systems involving signal-dependent motilities?, Nonlinearity, 33(12)(2020), 6590--6623. https://doi.org/10.1088/1361-6544/ab9bae
  14. C. Yoon and Y-J Kim, Bacterial chemotaxis without gradient-sensing, J. Math. Biol., 70(2015), 1359-1380. https://doi.org/10.1007/s00285-014-0790-y