DOI QR코드

DOI QR Code

Immunodysregulatory potentials of polyethylene or polytetrafuorethylene microplastics to mice subacutely exposed via intragastric intubation

  • JiHun Jo (Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University) ;
  • Manju Acharya (Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University) ;
  • Pramod Bahadur K C (Department of Toxicology, Graduate School of Daegu Catholic University) ;
  • Anju Maharjan (Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University) ;
  • DaEun Lee (Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University) ;
  • Ravi Gautam (Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University) ;
  • Jung‑Taek Kwon (Environmental Health Research Department, National Institute of Environmental Research) ;
  • KilSoo Kim (Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation) ;
  • ChangYul Kim (Department of Toxicology, Graduate School of Daegu Catholic University) ;
  • Yong Heo (Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University) ;
  • HyoungAh Kim (Department of Preventive Medicine, College of Medicine, The Catholic University of Korea)
  • Received : 2022.08.01
  • Accepted : 2023.02.06
  • Published : 2023.07.15

Abstract

Microplastics (MPs) have been recently recognized as posing a risk to human health. The adverse health effects of MP exposure have been recently reported, especially via the oral exposure route. The present study investigated whether subacute (4 week) exposure to polyethylene (PE) or polytetrafluorethylene (PTFE) MPs via gastric intubation caused immunotoxicity. Two different sizes of PE MPs (6.2 or 27.2 ㎛) and PTFE MPs (6.0 or 30.5 ㎛) were administered to 6-week-old mice of both sexes at 0 (corn oil vehicle control), 500, 1000, or 2000 mg/kg/day (n=4/group). No significant differences were observed between groups in the major thymic or splenic immune cell populations, including thymic CD4+, CD8+, CD4+/CD8+ T lymphocytes, and splenic helper T cells, cytotoxic T cells, and B cells. The ratio of interferon-gamma (IFNγ) to interleukin-4 (IL-4) in culture supernatants from polyclonally activated splenic mononuclear cells ex vivo (48 h) was dose-dependently decreased in female mice that received small- and large-size PTFE MPs. The IFNγ/IL-4 ratio was also decreased in the female mice dosed with large-size PE MPs. The serum IgG2a/IgG1 ratio was dose-dependently increased in male and female animals dosed with small-size PE MPs, in female animals dosed with large-size PTFE MPs, and in male animals dosed with small-size PTFE MPs. The present study implies that immune functions could be affected in animals exposed to MPs via gastric intubation. These effects are dependent on MP size, MP dose, MP polymer type, and mouse sex. Further investigations with longer exposure periods could be necessary to more clearly define the immunotoxic effects of MPs.

Keywords

Acknowledgement

This research was supported by the Korea Ministry of Environment (grant # 2020003120002) and the educational training program for the management of information on the hazards and risk of chemical substances funded by the Korea Ministry of Environment (entrusted to the Korea Chemicals Management Association).

References

  1. Stapleton PA (2021) Microplastic and nanoplastic transfer, accumulation, and toxicity in humans. Curr Opin Toxicolol 28:62-69. https://doi.org/10.1016/j.cotox.2021.10.001
  2. Yuan Z, Nag R, Cummins E (2022) Human health concerns regarding microplastics in the aquatic environment-from marine to food systems. Sci Total Environ 823:153730. https://doi.org/10.1016/j.scitotenv.2022.153730
  3. Wright SL, Kelly FJ (2017) Plastic and human health: a micro issue? Environ Sci Technol 51:6634-6647. https://doi.org/10.1021/acs.est.7b00423
  4. Wang YL, Lee YH, Chiu IJ, Lin YF, Chiu HW (2020) Potent impact of plastic nanomaterials and micromaterials on the food chain and human health. Int J Mol Sci 21:1727. https://doi.org/10.3390/ijms21051727
  5. Lu Y, Zhang Y, Deng Y, Jiang W, Zhao Y, Geng J, Ding L, Ren H (2016) Uptake and accumulation of polystyrene microplastics in zebrafsh (Danio rerio) and toxic effects in liver. Environ Sci Technol 50:4054-4060. https://doi.org/10.1021/acs.est.6b00183
  6. Nobre CR, Santana MFM, Maluf A, Cortez FS, Cesar A, Pereira CDS, Turra A (2015) Assessment of microplastic toxicity to embryonic development of the sea urchin Lytechinus variegatus (Echinodermata: Echinoidea). Mar Pollut Bull 92:99-104. https://doi.org/10.1016/j.marpolbul.2014.12.050
  7. Deng Y, Zhang Y, Lemos B, Ren H (2017) Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep 7:46687. https://doi.org/10.1038/srep46687
  8. Hirt N, Body-Malapel (2020) Immunotoxicity and intestinal effects of nano- and microplastics: a review of the literature. Part Fibre Toxicol 17:57. https://doi.org/10.1186/s12989-020-00387-7
  9. Huang Z, Weng Y, Shen Q, Zhao Y, Jin Y (2021) Microplastic: a potential threat to human and animal health by interfering with intsetinal barrier function and changing the intestinal microenvironment. Sci Total Environ 785:147365. https://doi.org/10.1016/j.scitotenv.2021.147365
  10. Lu L, Luo T, Zhao Y, Cai C, Fu Z, Jin Y (2019) Interaction between microplastics and microorganism as well as gut microbiota: a consideration on environmental animal and human health. Sci Total Environ 667:94-100. https://doi.org/10.1016/j.scitotenv.2019.02.380
  11. Lu L, Wan Z, Luo T, Fu Z, Yuanxiang Jin (2018) Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ 631-632:449-458. https://doi.org/10.1016/j.scitotenv.2018.03.051
  12. Han YH, Song YM, Kim GW, Ha CS, Lee JS, Kim MH, Son HY, Lee GY, Gautam R, Heo Y (2022) No prominent toxicity of polyethylene microplastics observed in neonatal mice following intratracheal instillation to dams during gestational and neonatal period. Toxcol Res 37:443-450. https://doi.org/10.1007/s43188-020-00086-7
  13. Gautam R, Jo JH, Acharya M, Maharjan A, Lee DE, Lim KCP, Lom CY, Kim KS, Heo HA Y (2022) Evaluation of potential toxicity of polyethlene microplastics on human derived cell lines. Sci Total Environ 838:156089. https://doi.org/10.1016/j.scitotenv.2022.156089
  14. Xiao J, Jiang X, Zhou Y, Sumayyah G, Zhou L, Tu B, Qin Q, Qiu J, Qin X, Zou Z, Chen C (2022) Results of a 30-day safety assessment in young mice orally exposed to polystyrene nanoparticles. Environ Pollut 292:118184. https://doi.org/10.1016/j.envpol.2021.118184
  15. Park TJ, Lee SH, Lee MS, Lee JK, Lee SH, Zoh KD (2020) Occurrence of micropastics in the Han river and riverine fish in South Korea. Sci Total Environ 708:134535. https://doi.org/10.1016/j.scitotenv.2019.134535
  16. Danopoulos E, Twiddy M, West R, Rotchell (2022) A rapid review and meta-regression analyses of the toxicological impacts of microplastic exposure in human cells. J Hazard Mater 427:127861. https://doi.org/10.1016/j.hazmat.2021.127861
  17. Li B, Ding Y, Cheng X, Sheng D, Xu Z, Rong Q, Wu Y, Zhao H, Ji X, Zhang Y (2020) Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere 244:125492. https://doi.org/10.1016/j.chemosphere.2019.125492
  18. Park E-J, Han J-S, Park E-J, Seong E, Lee G-H, Kim D-W, Son H-Y, Han H-Y, Lee B-S (2020) Repeated-oral dose toxicity of polyethylene microplastics and the possible implications on reproduction and development of the next generation. Chemosphere 324:75-85. https://doi.org/10.1016/j.toxlet.2020.01.008
  19. OECD (2018) Test No. 408: repeated dose 90-day oral toxicity study in rodents. OECD guidelines for the testing of chemicals, Sect. 4. OECD Publishing, Paris, France. https://doi.org/10.1787/9789264070707-en
  20. Lee SJ, Kang KK, Sung SE, Choi JH, Sung MK, Seong KY, Lee SJ, Yang SY, Seo MS, Kim KS (2022) Toxicity study and quantitative evaluation of polyethytlene microplastics in ICR mice. Polymers 14:402. https://doi.org/10.3390/polym14030402
  21. Lee SJ, Kang KK, Sung SE, Choi JH, Sung MK, Seong KY, Lee JA, Kang SB, Yang SY, Lee SJ, Lee KR, Seo MS, Kim KS (2022) In vivo toxicity and pharmacokinetics of polytetrafluorethylene microplastics in ICR mice. Polymers 14:2220. https://doi.org/10.3390/polym14112220
  22. Gokulan K, Kumar A, Lahiani MH, Sutherland VL, Cerniglia CE, Khare S (2021) Differential toxicological outcome of corn oil exposure in rats and mice as assessed by microbial composition, epithelial permeability, and ileal mucosa-associated immune status. Toxicol Sci 180:89-102. https://doi.org/10.1093/toxsci/kfaa177
  23. Sample Size Calculations (IACUC)/Research Support. https://www.bu.edu/researchsupport/compliance/animal-care/working-withanimals/research/sample-size-calculations-iacuc
  24. Kim HJ, Song ES, Lee JH, Gautam R, Shin SJ, Cho AR, Kim YG, Yang SJ, Jo JH, Acharya M, Maharjan A, Kim CY, Heo Y, Kim HA (2021) Dysregulation of murine immune functions on inhalational exposure to ammonia, dimethyl disulfide, 3-methylindole, or propionic acid. Toxicol Ind Health 37:219-228. https://doi.org/10.1177/0748233721996559
  25. Abbas AK, Burstein HJ, Bogens SA (1993) Determinants of helper T cell-dependent antibody production. Semin Immunol 5:441-447. https://doi.org/10.1006/smim.1993.1050
  26. Bitton A, Alvas S, Reichman H, Itan M, Karo-Atar D, Azouz NP, Rozenberg P, Diesendruck Y, Nahary L, Rothernberg ME, Benhar I, Munitz A (2020) A key role for IL-13 signaling via the type 2 IL-4 receptor in experimental atopic dermatitis. Sci Immunol 5:eaaw2938. https://doi.org/10.1126/sciimmunol.aaw2938
  27. Ebrahimi P, Abbasi S, Pashael R, Bogusz A, Oleszczuk P (2022) Investigating impact of physicochemical properties of microplastics on human health: a short bibliometric analysis and review. Chemosphere 289:133146. https://doi.org/10.1016/j.chemosphere.2021.133146
  28. Jang H-J, Shin CY, Kim K-B (2015) Safety evaluation of polyethylene glycol (PEG) compounds for cosmetic use. Tox Res 31:105-136. https://doi.org/10.5487/TR.2015.31.2.105
  29. Mesko MF, Novo DLR, Costa VC, Henn AS, Flores EMM (2020) Toxic and potentially toxic elements determination in cosmetics used for make-up: a critical review. Anal Chem Acta 1098:1-26. https://doi.org/10.1016/j.aca.2019.11.046
  30. Sanchez A, Rodriguez-Viso P, Domene A, Orozco H, Velez D, Devesa V (2022) Dietary microplastics: occurrence, exposure and health implications. Environ Res 212:113150. https://doi.org/10.1016/j.envres.2022.113160
  31. Rizk NM, Fadel A, AlShammari W, Younes N, Bashah M (2021) The immunopehnotyping changes of peripheral CD4 + T lymphopcytes and inflammatory markers of class III obesity subjetcs after laparoscopic gastric sleeve surgery-a follow-up study. J Inflamm Res 14:1743-1757. https://doi.org/10.2147/JIR.S282189
  32. Farmer JT, Dietert RR (2013) Immunotoxicology assessment in drug development. (Said Faqi a ed) a comprehensive guide to toxicology in nonclinical drug development, 2nd edn. Academic Press, Cambridge, USA, pp 247-262. https://doi.org/10.1016/B978-0-12-803620-4.00010-4.
  33. Kreitinger JM, Beamer CA, Shepherd DM (2016) Environmental immunology: lessons learned from exposure to a select panel of immunotoxicants. J Immunol 196:3217-3225. https://doi.org/10.4049/jimmunol.1502149
  34. Lee F, Lawrence DA (2018) From infections to anthropogenic inflicted pathologies: involvement of immune balance. J Tox Environ Health Part B 21:24-46. https://doi.org/10.1080/10937404.2017.1412212
  35. Chaddah MR, Tamminen WL (2014) B cell development, activation and effector functions. In: Mak TW, Saunders ME, Jett BD (eds) Primer to the immune response, 2nd edn. Academic Press, Cambridge, USA, pp 111-142. https://doi.org/10.1016/B978-0-12-385245-8.00005-4.
  36. Chen Z, Wang JH (2019) Signaling control of antibody isotype switching. Adv Immunol 141:105-164. https://doi.org/10.1016/bs.ai.2019.01.001
  37. Markine-Goriaynof D, van der Logt JTM, Truyens C, Nguyen TD, Heessen FWA, Bigaignon G, Carlier Y, Coutelier JP (2000) IFN-γ-independent IgG2a production in mice infected with viruses and parasites. Int Immunol 12:223-230. https://doi.org/10.1093/intimm/12.2.233
  38. Turner ML, Corcoran LM, Brink R, Hodgkin PD (2010) High-affinity B cell receptor ligation by cognate antigen induces cytokine-independent isotype switching. J Immunol 184:6592-6599. https://doi.org/10.1049/jimmunol.0903437
  39. Gerth AJ, Lin L, Peng SL (2003) T-bet regulates T-independent IgG2a class switching. Int Immunol 15:937-944. https://doi.org/10.1093/intimm/dxg093
  40. Yang Z, Wu CM, Targ S, Allen CDC (2020) IL-21 is a broad negative regulator of IgE class switch recombination in mouse and human B cells. J Exp Med 217:e20190472. https://doi.org/10.1084/jem.20190472