References
- Veauthier B, Hornecker JR. Crohn's disease: Diagnosis and management. Am Fam Physician 2018; 98(11): 661-669.
- Kaplan GG, Windsor JW. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2021; 18(1): 56-66. https://doi.org/10.1038/s41575-020-00360-x
- Burisch J, Munkholm P. Inflammatory bowel disease epidemiology. Curr Opin Gastroenterol 2013; 29(4): 357-362. https://doi.org/10.1097/MOG.0b013e32836229fb
- Burisch J, Munkholm P. The epidemiology of inflammatory bowel disease. Scand J Gastroenterol 2015; 50(8): 942-951. https://doi.org/10.3109/00365521.2015.1014407
- Shin SH. The trend of treating inflammatory bowel disease in the last 10 years [Internet]. Health Insurance Review & Assessment Service; 2020 [cited 2023 May 5]. Available from: https://repository.hira.or.kr/handle/2019.oak/2305.
- Seyedian SS, Nokhostin F, Malamir MD. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J Med Life 2019; 12(2): 113.
- Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018; 9(6): 7204.
- Strober W, Fuss I, Mannon P. The fundamental basis of inflammatory bowel disease. J Clin Invest 2007; 117(3): 514-521. https://doi.org/10.1172/JCI30587
- Arnone D, Chabot C, Heba AC, Kokten T, Caron B, Hansmannel F et al. Sugars and gastrointestinal health. Clin Gastroenterol Hepatol 2022; 20(9): 1912-1924. https://doi.org/10.1016/j.cgh.2021.12.011
- Stanhope KL. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit Rev Clin Lab Sci 2016; 53(1): 52-67. https://doi.org/10.3109/10408363.2015.1084990
- Food and Drug Administration. Added sugars on the new nutrition facts label [Internet]. Food and Drug Administration; 2022 [cited 2023 May 7]. Available from: https://www.fda.gov/food/new-nutrition-facts-label/added-sugars-new-nutrition-facts-label#:~:text=The%20Dietary%20Guidelines%20for%20Americans,of%20added%20sugars%20per%20day.
- Hou JK, Abraham B, El-Serag H. Dietary intake and risk of developing inflammatory bowel disease: A systematic review of the literature. Am J Gastroenterol 2011; 106(4): 563-573. https://doi.org/10.1038/ajg.2011.44
- Racine A, Carbonnel F, Chan SS, Hart AR, Bueno-de-Mesquita HB, Oldenburg B et al. Dietary patterns and risk of inflammatory bowel disease in Europe: Results from the EPIC study. Inflamm Bowel Dis 2016; 22(2): 345-354. https://doi.org/10.1097/MIB.0000000000000638
- Khan S, Waliullah S, Godfrey V, Khan MAW, Ramachandran RA, Cantarel BL et al. Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice. Sci Transl Med 2020; 12(567): eaay6218.
- Kalantar-Zadeh K, Berean KJ, Burgell RE, Muir JG, Gibson PR. Intestinal gases: Influence on gut disorders and the role of dietary manipulations. Nat Rev Gastroenterol Hepatol 2019; 16(12): 733-747. https://doi.org/10.1038/s41575-019-0193-z
- Yu Y, Shen M, Song Q, Xie J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr Polym 2018; 183: 91-101. https://doi.org/10.1016/j.carbpol.2017.12.009
- Niu W, Chen X, Xu R, Dong H, Yang F, Wang Y et al. Polysaccharides from natural resources exhibit great potential in the treatment of ulcerative colitis: A review. Carbohydr Polym 2021; 254: 117189.
- Saraiva A, Carrascosa C, Raheem D, Ramos F, Raposo A. Natural sweeteners: The relevance of food naturalness for consumers, food security aspects, sustainability and health impacts. Int J Environ Res Public Health 2020; 17: 6285.
- Paterson HM, Murphy TJ, Purcell EJ, Shelley O, Kriynovich SJ, Lien E et al. Injury primes the innate immune system for enhanced Toll-like receptor reactivity. J Immunol 2003; 171(3): 1473-1483. https://doi.org/10.4049/jimmunol.171.3.1473
- Wallace JL. COX-2: A pivotal enzyme in mucosal protection and resolution of inflammation. Sci World J 2006; 6: 577-588. https://doi.org/10.1100/tsw.2006.122
- Avdagic N, Zaciragic A, Babic N, Hukic M, Seremet M, Lepara O et al. Nitric oxide as a potential biomarker in inflammatory bowel disease. Bosn J Basic Med Sci 2013; 13(1): 5.
- Jablonski KA, Amici SA, Webb LM, de Dios Ruiz-Rosado J, Popovich PG, Partida-Sanchez S et al. Novel markers to delineate murine M1 and M2 macrophages. PLoS One 2015; 10(12): e0145342.
- Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol 2018; 11(1): 1-10. https://doi.org/10.1007/s12328-017-0813-5
- Thoreson R, Cullen JJ. Pathophysiology of inflammatory bowel disease: An overview. Surg Clin North Am 2007; 87(3): 575-585. https://doi.org/10.1016/j.suc.2007.03.001
- Bowman SA. Added sugars: Definition and estimation in the USDA Food Patterns Equivalents Databases. J Food Compost Anal 2017; 64: 64-67. https://doi.org/10.1016/j.jfca.2017.07.013
- Niaz K, Khan F, Shah MA. Analysis of carbohydrates (monosaccharides, polysaccharides). In: Sanches Silva A, Nabavi SF, Saeedi M. and Nabavi SM, editors. Recent advances in natural products analysis. : Elsevier press; 2020. p. 621-633.
- Van Horn L, Carson JAS, Appel LJ, Burke LE, Economos C, Karmally W et al. Recommended dietary pattern to achieve adherence to the American Heart Association/American College of Cardiology (AHA/ACC) guidelines: A scientific statement from the American Heart Association. Circulation 2016; 134(22): e505-e529. https://doi.org/10.1161/CIR.0000000000000462
- USDA, Economics Research Service. Sugar and sweeteners yearbook tables [Internet]. Economics Research Service. USDA; 2018 [cited 2023 May 9]. Available from: https://www.ers.usda.gov/data-products/sugar-and-sweeteners-yearbook-tables.aspx. Accessed, 3.
- Korea Disease Control and Prevention Agency. The daily dietary sugar intake in Korea [Internet]. Korea Disease Control and Prevention Agency; 2018 [cited 2023 May 11]. Available from: https://www.kdca.go.kr/.
- Lee HS, Kwon SO, Yon M, Kim D, Lee JY, Nam J et al. Dietary total sugar intake of Koreans: Based on the Korea National Health and Nutrition Examination Survey (KNHANES), 2008-2011. J Nutr Health 2014; 47(4): 268-276. https://doi.org/10.4163/jnh.2014.47.4.268
- Holt DJ, Chamberlain LM, Grainger DW. Cell-cell signaling in co-cultures of macrophages and fibroblasts. Biomaterials 2010; 31(36): 9382-9394. https://doi.org/10.1016/j.biomaterials.2010.07.101
- Wang L, Ji T, Yuan Y, Fu H, Wang Y, Tian S et al. High-fructose corn syrup promotes proinflammatory Macrophage activation via ROS-mediated NF-κB signaling and exacerbates colitis in mice. Int Immunopharmacol 2022; 109: 108814.
- Laffin M, Fedorak R, Zalasky A, Park H, Gill A, Agrawal A et al. A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice. Sci Rep 2019; 9(1): 12294.
- Han MK, Anderson R, Viennois E, Merlin D. Examination of food consumption in United States adults and the prevalence of inflammatory bowel disease using National Health Interview Survey 2015. PLoS One 2020; 15(4): e0232157.
- Martinez KB, Leone V, Chang EB. Western diets, gut dysbiosis, and metabolic diseases: Are they linked? Gut Microbes 2017; 8(2): 130-142. https://doi.org/10.1080/19490976.2016.1270811
- Sun S, Araki Y, Hanzawa F, Umeki M, Kojima T, Nishimura N et al. High sucrose diet-induced dysbiosis of gut microbiota promotes fatty liver and hyperlipidemia in rats. J Nutr Biochem 2021; 93: 108621.
- Wang Y, Qi W, Song G, Pang S, Peng Z, Li Y et al. High-fructose diet increases inflammatory cytokines and alters gut microbiota composition in rats. Mediators inflamm 2020; 6672636.
- Kotake T, Yamanashi Y, Imaizumi C, Tsumuraya Y. Metabolism of L-arabinose in plants. J Plant Res 2016; 129: 781-792. https://doi.org/10.1007/s10265-016-0834-z
- Li Y, Pan H, Liu JX, Li T, Liu S, Shi W et al. L-Arabinose inhibits colitis by modulating gut microbiota in mice. J Agric Food Chem 2019; 67(48): 13299-13306. https://doi.org/10.1021/acs.jafc.9b05829
- Kaats GR, Keith SC, Keith PL, Leckie RB, Perricone NV, Preuss HG. A combination of l-arabinose and chromium lowers circulating glucose and insulin levels after an acute oral sucrose challenge. Nutr J 2011; 10: 1-6. https://doi.org/10.1186/1475-2891-10-1
- Tamura M, Kurusu Y, Hori S. Effect of dietary l-arabinose on the intestinal microbiota and metabolism of dietary daidzein in adult mice. Biosci Microbiota Food Health 2012; 31(3): 59-65. https://doi.org/10.12938/bmfh.31.59
- Arya A, Kumar A. Teaching structural diversity of hexoses to graduate and postgraduate students: Methods to correlate stereochemistry. Biochem Mol Biol Educ 2020; 48(1): 8-20. https://doi.org/10.1002/bmb.21305
- Sharma V, Smolin J, Nayak J, Ayala JE, Scott DA, Peterson SN et al. Mannose alters gut microbiome, prevents diet-induced obesity, and improves host metabolism. Cell Rep 2018; 24(12): 3087-3098. https://doi.org/10.1016/j.celrep.2018.08.064
- Dong L, Xie J, Wang Y, Jiang H, Chen K, Li D et al. Mannose ameliorates experimental colitis by protecting intestinal barrier integrity. Nat Commun 2022; 13(1): 4804.
- Choi SS, Lynch BS, Baldwin N, Dakoulas EW, Roy S, Moore C et al. Safety evaluation of the human-identical milk monosaccharide, l-fucose. Regul Toxicol Pharmacol 2015; 72(1): 39-48. https://doi.org/10.1016/j.yrtph.2015.02.016
- Newburg DS, Ruiz-Palacios GM, Altaye M, Chaturvedi P, Meinzen-Derr J, Guerrero MdL et al. Innate protection conferred by fucosylated oligosaccharides of human milk against diarrhea in breastfed infants. Glycobiology 2004; 14(3): 253-263. https://doi.org/10.1093/glycob/cwh020
- He R, Li Y, Han C, Lin R, Qian W, Hou X. L-Fucose ameliorates DSS-induced acute colitis via inhibiting macrophage M1 polarization and inhibiting NLRP3 inflammasome and NF-kB activation. Int Immunopharmacol 2019; 73: 379-388. https://doi.org/10.1016/j.intimp.2019.05.013
- Elias PS, Benecke H, Schwengers D. Safety evaluation studies of leucrose. J Am Coll Toxicol 1996; 15(3): 205-218. https://doi.org/10.3109/10915819609008714
- Ziesenitz SC, Siebert G, Schwengers D, Lemmes R. Nutritional assessment in humans and rats of leucrose [D-glucopyranosyl-alpha(1----5)-D-fructopyranose] as a sugar substitute. J Nutr 1989; 119(7): 971-978. https://doi.org/10.1093/jn/119.7.971
- Kim E, Kim Y, Lee J, Shin JH, Seok PR, Kim Y et al. Leucrose, a natural sucrose isomer, suppresses dextran sulfate sodium (DSS)-induced colitis in mice by regulating macrophage polarization via JAK1/STAT6 signaling. J Funct Foods 2020; 74: 104156.
- White Jr JW, Hoban N. Composition of honey. IV. Identification of the disaccharides. Arch Biochem Biophys 1959; 80(2): 386-392. https://doi.org/10.1016/0003-9861(59)90267-X
- Ruiz-Aceituno L, Hernandez-Hernandez O, Kolida S, Moreno FJ, Methven L. Sweetness and sensory properties of commercial and novel oligosaccharides of prebiotic potential. LWT 2018; 97: 476-482. https://doi.org/10.1016/j.lwt.2018.07.038
- Chung JY, Lee J, Lee D, Kim E, Shin JH, Seok PR et al. Acute and 13-week subchronic toxicological evaluations of turanose in mice. Nutr Res Pract 2017; 11(6): 452-460. https://doi.org/10.4162/nrp.2017.11.6.452
- Chung JY, Kim YS, Kim Y, Yoo SH. Regulation of inflammation by sucrose isomer, turanose, in raw 264.7 cells. J Cancer Prev 2017; 22(3): 195.
- Sheedy FJ. Turning 21: Induction of miR-21 as a key switch in the inflammatory response. Front Immunol 2015; 6: 19.
- Tafere DA. Chemical composition and uses of Honey: A Review. J Food Sci Nutr Res 2021; 4(3): 194-201.
- Prakash A, Medhi B, Avti P, Saikia U, Pandhi P, Khanduja K. Effect of different doses of Manuka honey in experimentally induced inflammatory bowel disease in rats. Phytother Res 2008; 22(11): 1511-1519. https://doi.org/10.1002/ptr.2523
- Zhao H, Cheng N, Zhou W, Chen S, Wang Q, Gao H et al. Honey polyphenols ameliorate DSS-induced ulcerative colitis via modulating gut microbiota in rats. Mol Nutr Food Res 2019; 63(23): 1900638.