DOI QR코드

DOI QR Code

Phylogenetic and Recombination Analysis of Apple Stem Grooving Virus Isolates from Pears in Korea

  • Nam-Yeon Kim (Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University) ;
  • Rae-Dong Jeong (Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University)
  • Received : 2023.03.08
  • Accepted : 2023.03.20
  • Published : 2023.06.30

Abstract

The apple stem grooving virus (ASGV) is one of the most harmful latent viruses infecting pear orchards worldwide. To examine the genetic diversity of ASGV in Korean pear orchards, the complete coat protein (CP) gene of five ASGV isolates collected from various regions were identified. The five Korean ASGV isolates showed 88-96% nucleotide identity with the 11 isolates worldwide occurring elsewhere in the world. Phylogenetic analysis of five isolates, as well as the previously sequenced isolates, indicated that the ASGV clusters had no correlation with the host or geographical regions of origin. Recombination analysis showed that one of the five Korean isolates is a recombinant, with a recombination site in the CP gene region (nt 532-708). This study is the first report of natural recombination within the CP gene of ASGV isolates from pears grown in Korea.

Keywords

Acknowledgement

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through (Agri-Bioindustry Technology Development Program), funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (No. 317006-04-2-HD030).

References

  1. Adams, M. J., Candresse, T., Hammond, J., Kreuze, J. F., Martelli, G. P., Namba, S. et al. 2012. Family Betaflexiviridae. In: Virus Taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on the Taxonomy of Viruses, eds. by A. M. Q. King, M. J. Adams, E. B. Carstens and E. J. Lefkowitz, pp. 920-941. Elsevier-Academic Press, Amsterdam, The Netherlands.
  2. Alabi, O. J., Rwahnih, M. A., Mekuria, T. A. and Naidu, R. A. 2014. Genetic diversity of Grapevine virus A in Washington and California vineyards. Phytopathology 104: 548-560. https://doi.org/10.1094/PHYTO-06-13-0179-R
  3. Bao, Y., Chetvernin, V. and Tatusova, T. 2012. Pairwise sequence comparison (PASC) and its application in the classification of filoviruses. Viruses 4: 1318-1327. https://doi.org/10.3390/v4081318
  4. Boni, M. F., Posada, D. and Feldman, M. W. 2007. An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176: 1035-1047. https://doi.org/10.1534/genetics.106.068874
  5. Chare, E. R. and Holmes, E. C. 2006. A phylogenetic survey of recombination frequency in plant RNA viruses. Arch. Virol. 151:933-946. https://doi.org/10.1007/s00705-005-0675-x
  6. Chen, H., Chen, S., Li, Y., Ye, T., Hao, L., Fan, Z. et al. 2014. Phylogenetic analysis and recombination events in full genome sequences of Apple stem grooving virus. Acta Virol. 58: 309-316. https://doi.org/10.4149/av_2014_04_309
  7. Cho, I. K., Kim, D. H., Kim, H. R., Chung, B. N., Cho, J. D. and Choi, G. S. 2010. Occurrence of pome fruit viruses on pear trees (Pyrus pyrifolia) in Korea. Res. Plant Dis. 16: 326-330. https://doi.org/10.5423/RPD.2010.16.3.326
  8. Chung, B. N., Kwon, S.-J., Yoon, J.-Y. and Cho, I.-S. 2022. First report of Cnidium officinale as a natural host plant of apple stem grooving virus in South Korea. Plant Dis. 106: 338.
  9. Cordin, O., Hahn, D. and Beggs, J. D. 2012. Structure, function and regulation of spliceosomal RNA helicases. Curr. Opin. Cell Biol. 24: 431-438. https://doi.org/10.1016/j.ceb.2012.03.004
  10. Dhir, S., Zaidi, A. A. and Hallan, V. 2013. Molecular characterization and recombination analysis of the complete genome of Apple chlorotic leaf spot virus. J. Phytopathol. 161: 704-712. https://doi.org/10.1111/jph.12121
  11. Garcia-Arenal, F., Fraile, A. and Malpica, J. M. 2001. Annu. Rev. Phytopathol. 39: 157-186. https://doi.org/10.1146/annurev.phyto.39.1.157
  12. Gibbs, M. J., Armstrong, J. S. and Gibbs, A. J. 2000. Sister-scanning: a MonteCarlo procedure for assessing signals in recombinant sequences. Bioinformatics 16: 573-582. https://doi.org/10.1093/bioinformatics/16.7.573
  13. Holmes, E. C. 2009. The evolutionary genetics of emerging viruses. Annu. Rev. Ecol. Evol. Syst. 40: 353-372. https://doi.org/10.1146/annurev.ecolsys.110308.120248
  14. Hong, K. H., Kim, Y. S., Kim, W. C., Kim, J. B., Lee, U. J., Lee, E. J. et al. 1985. Studies on the abnormal spot disease in pear leaf. Res. Rept. RDA (Hortic.) 27: 46-55.
  15. Huson, D. 1998. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14: 68-73. https://doi.org/10.1093/bioinformatics/14.1.68
  16. Kim, J., Lal, A., Kil, E.-J., Kwak, H.-R., Yoon, H.-S., Choi, H.-S. et al. 2021. Adaptation and codon-usage preference of apple and pearinfecting apple stem grooving viruses. Microorganisms 9: 1111.
  17. Kim, N.-Y., Oh, J., Lee, S.-H., Kim, H., Moon, J. S. and Jeong, R.-D. 2018. Rapid and specific detection of Apple stem grooving virus by reverse transcription-recombinase polymerase amplification. Plant Pathol. J. 34: 575-579. https://doi.org/10.5423/PPJ.NT.06.2018.0108
  18. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWiliam, H. et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  19. Lee, D.-S., Lee, H.-K., Kim, S.-Y., Kwon, B.-R., Yang, H.-J., Park, C. Y. et al. 2023. Complete genome sequences of two apple stem grooving viruses in Cnidium officinale in Korea. Microbiol. Resour. Announc. 12: e00902-22. https://doi.org/10.1128/mra.00902-22
  20. Lefkowitz, E. J., Dempsey, D. M., Hendrickson, R. C., Orton, R. J., Siddell, S. G. and Smith, D. B. 2018. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 46: D708-D717. https://doi.org/10.1093/nar/gkx932
  21. Lian, S., Lee, J.-S., Cho, W. K., Yu, J., Kim, M.-K., Choi, H.-S. et al. 2013. Phylogenetic and recombination analysis of Tomato spotted wilt virus. PLoS ONE 8: e63380.
  22. Li, Y., Xia, Z., Peng, J., Zhou, T. and Fan, Z. 2013. Evidence of recombination and genetic diversity in southern rice black-steaked dwarf virus. Arch. Virol. 158: 2147-2151. https://doi.org/10.1007/s00705-013-1696-5
  23. Liu, P., Zhang, L., Zhang, H., Jiao, H. and Wu, Y. 2013. Detection and molecular variability of Apple stem grooving virus in Shaanxi, China. J. Phytopathol. 161: 445-449. https://doi.org/10.1111/jph.12083
  24. Martin, D. P., Murrell B., Golden M., Khoosal A. and Muhire B. 2015. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 1: vev033.
  25. Martin, D. P., Posada, D., Crandall, K. A. and Williamson, C. 2005a. A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res. Hum. Retroviruses 21: 98-102. https://doi.org/10.1089/aid.2005.21.98
  26. Martin, D. and Rybicki, E. 2000. RDP: detection of recombination amongst aligned sequences. Bioinformatics 16: 562-563. https://doi.org/10.1093/bioinformatics/16.6.562
  27. Martin, D. P., Williamson, C. and Posada, D. 2005b. RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21: 260-262. https://doi.org/10.1093/bioinformatics/bth490
  28. Nam, K. W. and Kim, C. H. 1994. Studies on the pear abnormal leaf spot disease. 1. Occurrence and damage. Korean J. Plant Pathol. 10: 169-174.
  29. Negi, A., Rana, T., Kumar, Y., Ram, R., Hallan, V. and Zaidi, A. A. 2010. Analysis of the coat protein gene of Indian strain of Apple stem grooving virus. J. Plant Biochem. Biotechnol. 19: 91-94. https://doi.org/10.1007/BF03323442
  30. Ohira, K., Ito, T., Kawai, A., Namba, S., Kusumi, T. and Tsuchizaki, T. 1994. Nucleotide sequence of the 3'-terminal region of Citrus tatter leaf virus RNA. Virus Genes 8: 169-172. https://doi.org/10.1007/BF01703075
  31. Padidam, M., Sawyer, S. and Fauquet, C. M. 1999. Possible emergence of new geminiviruses by frequent recombination. Virology 265: 218-255. https://doi.org/10.1006/viro.1999.0056
  32. Posada, D. and Crandall, K. A. 2001. Evaluation of methods for detection recombination from DNA sequences: computer simulation. Proc. Natl. Acad. Sci. U. S. A. 98: 13757-13762. https://doi.org/10.1073/pnas.241370698
  33. Shim, H., Min, Y., Hong, S., Kwon, M., Kim, D., Kim, H. et al. 2004. Nucleotide sequences of a Korean isolate of Apple stem grooving virus associated with black necrotic leaf spot disease on pear (Pyrus pyrifolia). Mol. Cells 18: 192-199. https://doi.org/10.1016/S1016-8478(23)13101-3
  34. Smith, J. M. 1992. Analyzing the mosaic structure of genes. J. Mol. Evol. 34: 126-129. https://doi.org/10.1007/BF00182389
  35. Takahashi, T., Saito, N. Goto, M., Kawai, A., Namba, S. and Yamshita, S. 1990. Apple stem grooving virus isolated from Japanese apricot (Prunus mume) imported from China. Res. Bull. Plant Prot. Serv. Jpn. 26: 15-21.
  36. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  37. Welsh, M. F. and van der Meer, F. A. 1989. Apple stem grooving. In: Virus and Viruslike Diseases of Pome Fruits and Simulating Noninfectious Disorders, ed. by P. R. Fridlund, pp. 127-137. Cooperative Extension College of Agriculture and Home Economics, Washington State University, Pullman, WA, USA.
  38. Yoon, J. Y., Joa, J. H., Choi, K. S., Do, K. S., Kim, H. C. and Chung, B. N. 2014. Genetic diversity of a natural population of Apple stem pitting virus isolated from apple in Korea. Plant Pathol. J. 30: 195-199. https://doi.org/10.5423/PPJ.NT.02.2014.0015