DOI QR코드

DOI QR Code

Influence of tongue pressure on the obturator prosthesis for soft palate defects: a 3D-FEA study

연조직 결손 시 사용되는 구개인두 폐쇄장치 형태에 따른 연하 시 혀 압력의 영향: 삼차원 유한요소 연구

  • Aein Mon (Dental Research Institute and Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Mi-El Kim (Dental Research Institute and Department of Oral Anatomy, School of Dentistry, Seoul National University) ;
  • Young-Jun Lim (Dental Research Institute and Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Myung-Joo Kim (Dental Research Institute and Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Ho-Beom Kwon (Dental Research Institute and Department of Prosthodontics, School of Dentistry, Seoul National University)
  • 에인 몬 (서울대학교 치의학대학원 치과보철과 및 치학연구소) ;
  • 김미엘 (서울대학교 치의학대학원 구강해부학교실 및 치학연구소) ;
  • 임영준 (서울대학교 치의학대학원 치과보철과 및 치학연구소) ;
  • 김명주 (서울대학교 치의학대학원 치과보철과 및 치학연구소) ;
  • 권호범 (서울대학교 치의학대학원 치과보철과 및 치학연구소)
  • Received : 2023.04.17
  • Accepted : 2023.04.29
  • Published : 2023.06.30

Abstract

Purpose: The purpose of the study was to analyze how swallowing tongue pressure affects the biomechanics of a velopharyngeal obturator prosthesis and compare its displacement across different occlusal rest positions. Materials and Methods: A 3D geometric model consisting of the maxilla, teeth, soft palate, and a portion of the pharynx was developed based on the CBCT and MRI data. A defect was created by the resection of soft palate portion. Two experimental models were generated based on two different velopharyngeal obturator designs: one "with mesial occlusal rests" (Model 1) and the other with "distal occlusal rests" (Model 2). A pressure of 25 kPa was applied at the surface of the bulb of the obturator prosthesis opposite the base of the tongue to simulate tongue pressure during swallowing. The maximum von-Mises stress and displacement values of two types of obturator prostheses were analyzed and compared. Results: The maximum von-Mises stress in the metal framework, located at the posterior palatal strap, was slightly higher in model 1 (64.9 MPa) than in model 2 (54.2 MPa). In both models, the acrylic resin obturator bulb exhibited a maximum stress value of 4.3 MPa. There was no significant difference in prosthesis displacement between the two models, with 31.3 ㎛ for model 1 and 33.6 ㎛ for model 2. Conclusion: Swallowing tongue pressure had a minor impact on the biomechanics of a velopharyngeal obturator prosthesis, and distal occlusal rests showed a slightly better biomechanical response compared to mesial occlusal rests.

목적: 본 연구의 목적은 연하 시 혀 압력이 구개인두 폐쇄장치의 생체 역학에 어떻게 영향을 미치는지 분석하고 교합면 레스트 위치에 따른 변위량을 비교하는 것이었다. 연구 재료 및 방법: CBCT와 MRI 데이터를 바탕으로 상악골, 치아, 연구개, 인두의 일부로 구성된 3차원 모형을 제작하였고, 연구개 부위를 절제하여 결손부를 구성하였다. 서로 다른 구개인두 폐쇄장치 설계를 기반으로 한 실험 모델 2개를 제작하였으며 Model 1은 '근심 교합면 레스트'가 포함되었고, Model 2는 '원심 교합면 레스트'가 포함되었다. 연하 시 압력을 시뮬레이션하기 위해 혀의 기저부 반대편에 있는 폐쇄장치 벌브에 25 kPa의 압력을 적용하였다. 3차원 유한요소법을 이용하여 두 종류의 폐쇄장치 보철물에 대한 최대 von-Mises 응력 값과 변위량을 측정하고 비교하였다. 결과: 후방 구개판에 위치한 금속 구조물의 최대 von-Mises 응력 값은 Model 2 (54.2 MPa)보다 Model 1 (64.9 MPa)에서 약간 더 높게 관찰되었다. 폐쇄장치 벌브의 아크릴릭 레진에서는 두 모형 모두 4.3 MPa의 최대 응력 값을 나타내었다. 보철물의 변위량은 Model 1이 31.3 ㎛, Model 2가 33.6 ㎛로 두 모형 사이에 큰 차이가 없었다. 결론: 연하 시 혀 압력은 구개인두 폐쇄장치의 생체 역학에 경미한 영향을 미쳤으며, 원심 교합면 레스트는 근심 교합면 레스트에 비해 더 유리한 생역학적 반응을 나타낸 것으로 관찰되었다.

Keywords

Acknowledgement

This study was supported by grant no 04-2018-0097 from the SNUDH Research Fund.

References

  1. Gaziano JE. Evaluation and management of oropharyngeal dysphagia in head and neck cancer. Cancer Control 2002;9:400-9. https://doi.org/10.1177/107327480200900505
  2. Boseley ME, Hartnick CJ. Assessing the outcome of surgery to correct velopharyngeal insufficiency with the pediatric voice outcomes survey. Int J Pediatr Otorhinolaryngol 2004;68:1429-33. https://doi.org/10.1016/j.ijporl.2004.06.002
  3. Thomas L, Jones TM, Tandon S, Katre C, Lowe D, Rogers SN. An evaluation of the University of Washington quality of life swallowing domain following oropharyngeal cancer. Eur Arch Otorhinolaryngol 2008;265 Suppl 1:S29-37. https://doi.org/10.1007/s00405-007-0470-2
  4. Barata LF, de Carvalho GB, Carrara-de Angelis E, de Faria JCM, Kowalski LP. Swallowing, speech and quality of life in patients undergoing resection of soft palate. Eur Arch Otorhinolaryngol 2013;270:305-12. https://doi.org/10.1007/s00405-012-2006-7
  5. Aramany MA, Myers EN. Prosthetic reconstruction following resection of the hard and soft palate. J Prosthet Dent 1978;40:174-8. https://doi.org/10.1016/0022-3913(78)90013-6
  6. Shetty NB, Shetty S, Nagraj E, D'Souza R, Shetty O. Management of velopharyngeal defects: A review. J Clin Diagn Res 2014;8:283-7. https://doi.org/10.7860/JCDR/2014/6220.4188
  7. Saunders TR, Oliver NA. A speech-aid prosthesis for anterior maxillary implant-supported prostheses. J Prosthet Dent 1993;70:546-7. https://doi.org/10.1016/0022-3913(93)90271-O
  8. Abreu A, Levy D, Rodriguez E, Rivera I. Oral rehabilitation of a patient with complete unilateral cleft lip and palate using an implant-retained speech-aid prosthesis: Clinical report. Cleft Palate Craniofac J 2007;44:673-7. https://doi.org/10.1597/06-169.1
  9. Raol N, Hartnick CJ. Anatomy and physiology of velopharyngeal closure and insufficiency. Adv Otorhinolaryngol 2015;76:1-6. https://doi.org/10.1159/000368003
  10. McConnel FM. Analysis of pressure generation and bolus transit during pharyngeal swallowing. Laryngoscope 1988;98:71-8. https://doi.org/10.1288/00005537-198801000-00015
  11. Jacob RF, King G. Indirect retainers in soft palate obturator design. J Prosthet Dent 1990;63:311-5. https://doi.org/10.1016/0022-3913(90)90203-O
  12. Tuna SH, Pekkan G, Gumus HO, Aktas A. Prosthetic rehabilitation of velopharyngeal insufficiency: pharyngeal obturator prostheses with different retention mechanisms. Eur J Dent 2010;4:81-7. https://doi.org/10.1055/s-0039-1697813
  13. Collin JD, Main BGJ, Barber AJ, Thomas SJ. Airway compromise by dislodged obturator in a patient with severe trismus. J Prosthet Dent 2014;112:83-5. https://doi.org/10.1016/j.prosdent.2013.08.021
  14. Hohmann A, Kober C, Young P, Dorow, C, Geiger M, Boryor A, Sander FM, Sander C, Sander FG. Influence of different modeling strategies for the periodontal ligament on finite element simulation results. Am J Orthod Dentofacial Orthop 2011;139:775-83. https://doi.org/10.1016/j.ajodo.2009.11.014
  15. Tachimura T, Nohara K, Wada T. Effect of placement of a speech appliance on levator veli palatini muscle activity during speech. Cleft Palate Craniofac J 2000;37:478-82. https://doi.org/10.1597/1545-1569_2000_037_0478_eopoas_2.0.co_2
  16. de Sousa AA, Mattos BSC. Finite element analysis of stability and functional stress with implant-supported maxillary obturator prostheses. J Prosthet Dent 2014;112:1578-84.
  17. Rubin C, Krishnamurthy N, Capilouto E, Yi H. Stress analysis of the human tooth using a three-dimensional finite element model. J Dent Res 1983;62:82-6. https://doi.org/10.1177/00220345830620021701
  18. Reinhardt RA, Pao YC, Krejci RF. Periodontal ligament stresses in the initiation of occlusal traumatism. J Periodontal Res 1984;19:238-46. https://doi.org/10.1111/j.1600-0765.1984.tb00815.x
  19. Rees JS, Jacobsen PH. Elastic modulus of the periodontal ligament. Biomaterials 1997;18:995-9. https://doi.org/10.1016/S0142-9612(97)00021-5
  20. Miyashita ER, Mattos BSC, Noritomi PY, Navarro H. Finite element analysis of maxillary bone stress caused by Aramany class IV obturator prostheses. J Prosthet Dent 2012;107:336-42. https://doi.org/10.1016/S0022-3913(12)60086-9
  21. Haddad SMH, Dhaliwal SS, Rotenberg BW, Samani A, Ladak HM. Estimation of the Young's moduli of fresh human oropharyngeal soft tissues using indentation testing. J Mech Behav Biomed Mater 2018;86:352-8. https://doi.org/10.1016/j.jmbbm.2018.07.004
  22. Birch MJ, Srodon PD. Biomechanical properties of the human soft palate. Cleft Palate Craniofac J 2009;46:268-74. https://doi.org/10.1597/08-012.1
  23. Carrigy NB, Carey JP, Martin AR, Remmers JE, Zareian A, Topor Z, Grosse J, Noga M, Finlay WH. Simulation of muscle and adipose tissue deformation in the passive human pharynx. Comput Methods Biomech Biomed Engin 2016;19:780-8. https://doi.org/10.1080/10255842.2015.1062477
  24. Kim SM, Kim SJ, Bae HS, Choi BC, Mun JH. A nondestructive diagnostic modeling for muscular dysfunction of human pharynx using finite element method. Key Eng Mater 2004;270-273:2061-6. https://doi.org/10.4028/www.scientific.net/KEM.270-273.2061
  25. Ha SR, Kim SH, Lee JB, Han JS, Yeo IS, Yoo SH, Kim HK. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement thickness. Ceram Int 2016;42:14928-36. https://doi.org/10.1016/j.ceramint.2016.06.133
  26. Heo KH, Lim YJ, Kim MJ, Kwon HB. Three-dimensional finite element analysis of the splinted implant prosthesis in a reconstructed mandible. J Adv Prosthodont 2018;10:138-46. https://doi.org/10.4047/jap.2018.10.2.138
  27. Eom JW, Lim YJ, Kim MJ, Kwon HB. Three-dimensional finite element analysis of implantassisted removable partial dentures. J Prosthet Dent 2017;117:735-42. https://doi.org/10.1016/j.prosdent.2016.09.021
  28. Wang M, Qu X, Cao M, Wang D, Zhang C. Biomechanical three-dimensional finite element analysis of prostheses retained with/without zygoma implants in maxillectomy patients. J Biomech 2013;46:1155-61. https://doi.org/10.1016/j.jbiomech.2013.01.004
  29. Shahmiri R, Das R, Aarts JM, Bennani V. Finite element analysis of an implant-assisted removable partial denture during bilateral loading: Occlusal rests position. J Prosthet Dent 2014;112:1126-33. https://doi.org/10.1016/j.prosdent.2014.04.023
  30. Qazi WM, Ekberg O, Wiklund J, Kotze R, Stading M. Assessment of the food-swallowing process using bolus visualisation and manometry simultaneously in a device that models human swallowing. Dysphagia 2019;34:821-33. https://doi.org/10.1007/s00455-019-09995-8
  31. Al-Toubi AK, Doeltgen SH, Daniels SK, Corey DM, Huckabee ML. Pharyngeal pressure differences between four types of swallowing in healthy participants. Physiol Behav 2015;140:132-8. https://doi.org/10.1016/j.physbeh.2014.12.029
  32. Zarrati S, Bahrami M, Heidari F, Kashani J. Three dimensional finite element analysis of distal abutment stresses of removable partial dentures with different retainer designs. J Dent (Tehran) 2015;12:389-97.