DOI QR코드

DOI QR Code

Effect and effective distance of rust and scale suppression by zinc device in piping

배관 내 아연 장치에 의한 녹과 스케일 억제 효과와 유효거리

  • Kyung-Taek Yum (Graduate School of Water Resources, Sungkyunkwan University) ;
  • Sang-Jin Woo (Technical division, Jinhaeng Waterway) ;
  • Sung-Bong Yang (Technical division, Jinhaeng Waterway) ;
  • Hak-Sup Shim (Technical division, Jinhaeng Waterway) ;
  • Mee-Seon Yu (School of Civil & Environment Engineering, University of Ulsan)
  • Received : 2023.02.21
  • Accepted : 2023.04.03
  • Published : 2023.04.15

Abstract

The electrical connection between zinc metal and iron in contact with water prevents oxidation of iron until all zinc is dissolved, which is called a zinc sacrificial anode phenomenon. In the case of water pipes, zinc is often attached to the outside of the pipe, but examples of mounting zinc inside the pipe to prevent iron corrosion are not well known. Zinc devices sold for water pipes vary in the amount of zinc installed depending on the diameter of the pipe and the conditions of use, but the life of the product is generally expected to be 10-20 years until all zinc dissolves and disappears. Zinc ions dissolved from zinc to water in the pipe react with the calcium carbonate scale generated inside the pipe to consume zinc ions, and it was confirmed that the needle-shaped aragonite was converted into highly crystalline calcium after observing the scale crystal through an electron microscope. In addition, it is estimated that calcium ions of scale are replaced by zinc ions, gradually losing crystallinity, being deintercalated into the pipe, and oxygen in the water is consumed during the dissolution of zinc ions from zinc metals, turning red rust hematite (Fe2O3) into magnetite (Fe3O4). In addition, zinc ions were expected to move hundreds to thousands of meters depending on the diameter of the pipe in the new pipe, but it was confirmed that the travel distance was shortened in the case of pipes with many corrosion products.

Keywords

References

  1. Alkalion, https://blog.yeogie.com/alkalion/infor. Seoul Waterworks Headquarters (2022).
  2. Central Facility Engineering. (2000). Ion scale buster with excellent anti-rust effect is on sale, Monthly Facility Construction, February Issue, 83-85.
  3. Cho, C.S. and Kim, T.H. (2001). A study on the diagnosis and renovation of the mechanical facilities system, Korea Institute of Construction Technology, KICT 2001-056, 46-52.
  4. Clean Water System, Clean Water, http://en.cws153.com/47 (March 15, 2023).
  5. Cox, G.L. (1931). The nitrate muddle, Ind. Eng. Chem., 23(9), 977-979. https://doi.org/10.1021/ie50261a001
  6. EPA. (1984). Corrosion manual for internal corrosion of water distribution systems, EPA 570/9-84-001, 70-72.
  7. Fujii, T., Kodama, T. and Baba, H. (1981). Corrosion damage of water supply piping in urban buildings, Zairyo-to-Kankyo, 30, 627-633. https://doi.org/10.3323/jcorr1974.30.11_627
  8. Fujii, T., Kodama, T. and Baba, H. (1982). Influence of Water Quality and Flow Conditions on Corrosion of Carbon Steel Pipes in Fresh Water, Zairyo-to-Kankyo, 31, 637-642. https://doi.org/10.3323/jcorr1974.31.10_637
  9. Gaston, M.D. (2016). "Zinc-coated ductile iron pipe", Pipelines, ASCE Piplines conference in Kansas City, 20 July, Missouri.
  10. Ghizellaoui, S. and Euvrard, M. (2008). Assessing the effect of zinc on the crystallization of calcium carbonate, Desalination, 220(s1-3), 394-402. https://doi.org/10.1016/j.desal.2007.02.044
  11. Glasner, A. and Weiss, D. (1980). The crystallization of calcite from aqueous solutions and the role of zinc and magnesium ions -I. Precipitation of calcite in the presence of the presence of Zn2+ ions, J. Inorg. Nucl. Chem., 42(5), 655-663. https://doi.org/10.1016/0022-1902(80)80210-7
  12. Iorex, IOREX Co., Ltd., http://en.iorex.co.kr/sub.php?menu=6 (March 15, 2023).
  13. I-Water. (2017). Aegis Ltd., http://waterindustry.co.kr/data/ata02.php?ptype=view&idx=70706&page=4&code=data02(March 15, 2023).
  14. Jinhaeng RSI. (2023). - Physical Water Conditioner, ScaleBuster - Jinhaeng waterway Ltd., https://www.waterway.kr/kr/sub/roduct/scalebuster1.asp (March 15, 2023).
  15. Joo, D.S., Park, N.S., Park, H.Y. and Oh, J.W. (1998). Prediction of chlorine residual in water distribution system, J. Korea Soc. Water Wastewater, 12(3), 97-106.
  16. KCL. (2018a). Performance evaluation of corrosion suppression system (SB-ALPHA) of steel pipe for water supply using metal potential differences between brass and zinc, Report of Korea Conformity Laboratories, CU-18-00507.
  17. KCL. (2018b). Test and evaluation of corrosion suppression system (SB-ALPHA) in the steel plates for tap-water supply using metal potential differences between brass and zinc, Report of Korea Conformity Laboratories, CU-18-00769.
  18. Kitano, Y., Kanamori, N. and Yoshika, S. (1976). Adsorption of zinc and copper ions on calcite and aragonite and its influence on the transfornation of aragonite to calcite, Geochem, J., 10, 175-179. https://doi.org/10.2343/geochemj.10.175
  19. Kodama, T., Fujii, T. and Baba, H. (1981). Corrosion Tests of Plumbing Materials at Water Works, Zairyo-to-Kankyo, 30, 462-468. https://doi.org/10.3323/jcorr1974.30.8_462
  20. Matsukawa, Y., Miyashita, M. and Asakura, S. (2008). Influence of anions on corrosion behavior of zinc in tap water, Zairyo-to-Kankyo, 57, 392-399. https://doi.org/10.3323/jcorr.57.392
  21. Nagata, H., Matsunaga, M. and Hosokawa, K. (1992). Zinc-silicate formation in galvanized steel pipes for water service and its relationship to morphology of corrosion, Zairyo-to-Kankyo, 41, 816-823. https://doi.org/10.3323/jcorr1991.41.816
  22. Nippon Steel. (2019). Corrosion resistance of hot zinc plated steel sheet, Corrosion resistance data collection of hot zinc plated steel under various corrosion environments, U021_01_201904f, https://www.nipponsteel.com/product/atalog_download/pdf/U021.pdf (December 27, 2022)
  23. Ramakrishna, C., Thenepalli, T. and Ahn, J.W. (2017). A brief review of aragonite precipitated calcium carbonate (PCC) synthesis methods and its applications, Korea Chem. Eng. Res., 55(4), 443-455.
  24. Reichle, R., McCurdy, K.G. and Hepler, L.G. (1975). Zinc hydroxide: Solubility product and hydroxy-complex stability conctants from 12.5-75℃, Can. J. Chem., 53, 3841-3845. https://doi.org/10.1139/v75-556
  25. Scale Filter. (2023). Ojoo ENC Co., Ltd. http://www.scaleilter.co.kr/en/products/introduce.
  26. The Biowater. (2023). Toshikogyo Co., Ltd. https://www.catalabo.rg/iportal/cv.do?c=32587600000&pg=3&v=CATALABO.
  27. Wang, H., Alfredsson, V., Tropsch, J., Ettl, R. and Nylander, T. (2013). Formation of CaCO3 deposits on hard surfaces-Effect of bulk solution conditions and surface properties, ACS Appl. Mater. Interfaces, 5, 4035-4045. https://doi.org/10.1021/am401348v
  28. WHO. (1996). Zinc in Drinking-water, Guidelines for drinking-water quality, 2nd ed. Vo. 2. Health criteria and other supporting information.
  29. WHO. (2017). Guidelines for drinking-water quality, 4th ed. incorporating the 1st addendum, 229-230.
  30. Wojtkowska, M., Agnieszka Malesi'nska, A., Machowska, A., Puntorieri, P., Barbaro, G., Fiamma, V. and Biedugnis, S. (2022). The influence of water quality change on the corrosion process in galvanized pipes of fire protection installations, Sustainability, 14, 7708, 1-18. https://doi.org/10.1108/SAMPJ-07-2021-0268
  31. Yu, M.S., Lee, S.H., Choi, J.W., Shim, H.S. and Yang, S.B. (2021). Prediction of corrosion inhibition effect on steel coupons and tap-water pipe with zinc ionization device, J. Korean Soc. Environ. Technol., 22(3), 203-212. https://doi.org/10.26511/JKSET.22.3.4
  32. Yu, M.S., Lee, S.H., Shim, H.S., Yang, S.B. and Shim, H.S. (2022). Measurement on the effect of inhibiting and removing calcium carbonate scale in water by zinc ionizing device, J. Korean Soc. Environ. Technol., 23(1), 66-77. https://doi.org/10.26511/JKSET.23.1.9
  33. Yu, M.S., Yang, S.B., Lee, S.H., Shim, H.S., and Lee, S.H. (2020). Measurement of inhibition effects on the iron coupon in tap-water with zinc ionization device, J. Korean Soc. Environ. Technol., 6(1), 439-446. https://doi.org/10.26511/JKSET.21.6.4
  34. Yum, K.T., Choi, J.W., Yang, S.B., Shim, H.S. and Yu, M.S. (2021). Empirical study on inhibition effect of scale and rust in tap-water line by zinc ionization device, J. Korean Soc. Water Wastewater, 35(6), 97-106. https://doi.org/10.11001/jksww.2021.35.6.465
  35. Zachara, J.M., Kittrick, J.A. and Harsh, J.B. (1988). The mechanism of Zn2+ adsorption on calcite, Geochim. et Cosmochim. Acta, 52(9), 2281-2291. https://doi.org/10.1016/0016-7037(88)90130-5
  36. Zeppenfeld, K., Inhibition of CaCO3 scaling by zinc(II) and copper(II) : The counteracting effect of precipitated ZnCO3 and Cu(OH)2, Research Gate, 10.13140/RG.2.2.26272.17928, 2017.