DOI QR코드

DOI QR Code

Effects of temperature and pressure on process performance in brackish water reverse osmosis

기수 역삼투 공정에서 온도와 압력이 공정성능에 미치는 영향

  • Sun-A An (Department of Environmental Engineering and Energy, Myongji University) ;
  • Cheol-Gyu Park (Department of Environmental Engineering and Energy, Myongji University) ;
  • Jin-San Lee (Department of Environmental Engineering and Energy, Myongji University) ;
  • Seong-Min Cho (Department of Environmental Engineering and Energy, Myongji University) ;
  • Han-Seung Kim (Department of Environmental Engineering and Energy, Myongji University)
  • 안선아 (명지대학교 환경에너지공학과) ;
  • 박철규 (명지대학교 환경에너지공학과) ;
  • 이진산 (명지대학교 환경에너지공학과) ;
  • 조성민 (명지대학교 환경에너지공학과) ;
  • 김한승 (명지대학교 환경에너지공학과)
  • Received : 2022.12.20
  • Accepted : 2023.02.14
  • Published : 2023.02.15

Abstract

This study was conducted to evaluate the filtration performance according to the feed temperature composed of NaCl and the operating pressure of the brackish water reverse osmosis (BWRO) process. The temperature is known that decides the filtration performance of reverse osmosis (RO). It is noted that temperature increase activates the permeate of salts due to augment of diffusivity and mass transfer. Filtration of the lab-scale RO system was performed with constant pressure and the constant flow was simulated. The salt rejection measured by the concentration of the feed and permeate was compared with water permeability and salt permeability in the conditions containing various temperatures (5, 10, 15, 20, 25, and 30℃) and pressures (10, 12, 15, and 18 bar). An increase in feed temperature from 5 ℃ to 30 ℃ caused a 4.65% decrease in salt rejection in CSM, due to an increase in salt permeability (4.06 times) rather than an increase in water permeability (2.62 times). Specific energy consumption (SEC) was calculated by using an electricity meter set in the RO system. It was expected that the SEC by the increases in temperature and pressure decreased due to the viscosity decline of the feed and the permeate flux augment, respectively. The SEC decreased by 63.4% in CSM and by 54.3% in Nittodenko when the feed temperature increased from 5 ℃ to 30 ℃. It discussed how to operate the optimal RO process through the effect of temperature and operating pressure and the comparison of SEC.

Keywords

Acknowledgement

본 연구는 한국환경산업기술원 "수열 활용확대 기술 및 환경적합성 기술개발사업(G232020120073)"의 지원으로 수행되었습니다.

References

  1. AghaKouchak, A., Cheng, L., Mazdiyasni, O., and Farahmand, A. (2014). Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought, Geophys. Res. Lett., 41(24), 8847-8852.  https://doi.org/10.1002/2014GL062308
  2. Al-Karaghouli, A., and Kazmerski, L.L. (2013). Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes, Renew. Sustain. Energy Rev., 24, 343-356.  https://doi.org/10.1016/j.rser.2012.12.064
  3. Al-Mutaz, I.S., and Al-Ghunaimi, M.A. (2001). "Performance of reverse osmosis units at high temperatures", In The IDA World Congress on Desalination and Water Reuse, Bahrain: IDA. 
  4. Al-Zahrani, A., Orfi, J., Al-Suhaibani, Z., Salim, B., and Al-Ansary, H. (2012). Thermodynamic analysis of a reverse osmosis desalination unit with energy recovery system, Procedia Eng., 33, 404-414.  https://doi.org/10.1016/j.proeng.2012.01.1220
  5. Anis, S.F., Hashaikeh, R., and Hilal, N. (2019). Reverse osmosis pretreatment technologies and future trends: A comprehensive review, Desalination, 452, 159-195.  https://doi.org/10.1016/j.desal.2018.11.006
  6. El-Emam, R.S., and Dincer, I. (2014). Thermodynamic and thermoeconomic analyses of seawater reverse osmosis desalination plant with energy recovery, Energy, 64, 154-163.  https://doi.org/10.1016/j.energy.2013.11.037
  7. Farooque, A.M., Jamaluddin, A.T.M., Al-Reweli, A.R., Jalaluddin, P.A.M., Al-Marwani, S.M., Al-Mobayed, A.A., and Qasim, A.H. (2008). Parametric analyses of energy consumption and losses in SWCC SWRO plants utilizing energy recovery devices, Desalination, 219(1-3), 137-159.  https://doi.org/10.1016/j.desal.2007.06.004
  8. Figoli, A., and Criscuoli, A. (Eds.). (2017). Sustainable Membrane Technology for Water and Wastewater Treatment, Springer Nature, Singapore, 1-387. ISBN 978-981-10-5623-9. 
  9. Ghaffour, N., Missimer, T.M., and Amy, G.L. (2013). Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability, Desalination, 309, 197-207.  https://doi.org/10.1016/j.desal.2012.10.015
  10. Goh, P.S., Lau, W.J., Othman, M.H.D., and Ismail, A.F. (2018). Membrane fouling in desalination and its mitigation strategies, Desalination, 425, 130-155.  https://doi.org/10.1016/j.desal.2017.10.018
  11. Jamaly, S., Darwish, N.N., Ahmed, I., and Hasan, S.W. (2014). A short review on reverse osmosis pretreatment technologies, Desalination, 354, 30-38.  https://doi.org/10.1016/j.desal.2014.09.017
  12. Jin, X., Jawor, A., Kim, S., and Hoek, E.M. (2009). Effects of feed water temperature on separation performance and organic fouling of brackish water RO membranes, Desalination, 239(1-3), 346-359.  https://doi.org/10.1016/j.desal.2008.03.026
  13. Koutsou, C.P., Kritikos, E., Karabelas, A.J., and Kostoglou, M. (2020). Analysis of temperature effects on the specific energy consumption in reverse osmosis desalination processes, Desalination, 476, 114213. 
  14. Micale, G., Rizzuti, L., and Cipollina, A. (Eds.). (2009). Seawater desalination: conventional and renewable energy processes, Springer. 
  15. Mulder, M., and Mulder, J. (1996). Basic principles of membrane technology. Springer science & business media.
  16. Nassrullah, H., Anis, S.F., Hashaikeh, R., and Hilal, N. (2020). Energy for desalination: A state-of-the-art review, Desalination, 491, 114569. 
  17. Okampo, E.J., and Nwulu, N. (2021). Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review, Renew. Sustain. Energy Rev., 140, 110712. 
  18. Park, P.K., Lee, S., Cho, J.S., and Kim, J.H. (2012). Full-scale simulation of seawater reverse osmosis desalination processes for boron removal: Effect of membrane fouling, Water Res., 46(12), 3796-3804.  https://doi.org/10.1016/j.watres.2012.04.021
  19. Qasim, M., Badrelzaman, M., Darwish, N.N., Darwish, N.A., and Hilal, N. (2019). Reverse osmosis desalination: A state-of-the-art review, Desalination, 459, 59-104.  https://doi.org/10.1016/j.desal.2019.02.008
  20. Qasim, M., Darwish, N.A., Sarp, S., and Hilal, N. (2015). Water desalination by forward (direct) osmosis phenomenon: A comprehensive review, Desalination, 374, 47-69.  https://doi.org/10.1016/j.desal.2015.07.016
  21. Qasim, M., Darwish, N.N., Mhiyo, S., Darwish, N.A., and Hilal, N. (2018). The use of ultrasound to mitigate membrane fouling in desalination and water treatment, Desalination, 443, 143-164.  https://doi.org/10.1016/j.desal.2018.04.007
  22. Roorda, J.H., and van der Graaf, J.H.J.M., (2001). New parameter for monitoring fouling during ultrafiltration of WWTP effluent, Water Sci. Technol., 43(10), 241e248. 
  23. Shahzad, M.W., Burhan, M., Ang, L., and Ng, K.C. (2017). Energy-water-environment nexus underpinning future desalination sustainability, Desalination, 413, 52-64.  https://doi.org/10.1016/j.desal.2017.03.009
  24. Tao, C., Parker, W., and Berube, P. (2021). Assessing the role of cold temperatures on irreversible membrane permeability of tertiary ultrafiltration treating municipal wastewater, Sep. Purif. Technol., 278, 119556. 
  25. van den Brink, P., Satpradit, O.A., van Bentem, A., Zwijnenburg, A., Temmink, H., and van Loosdrecht, M. (2011). Effect of temperature shocks on membrane fouling in membrane bioreactors, Water Res., 45(15), 4491-4500.  https://doi.org/10.1016/j.watres.2011.05.046
  26. Voutchkov, N. (2018). Energy use for membrane seawater desalination-current status and trends, Desalination, 431, 2-14.  https://doi.org/10.1016/j.desal.2017.10.033
  27. Wilhite, D.A. (Ed.). (2016). Droughts: a global assessment, Routledge, London, 1-752. ISBN 1317854233. 
  28. Youssef, P.G., Al-Dadah, R.K., and Mahmoud, S.M. (2014). Comparative analysis of desalination technologies, Energy Procedia, 61, 2604-2607.  https://doi.org/10.1016/j.egypro.2014.12.258