DOI QR코드

DOI QR Code

Antimicrobial therapies for chronic pain (part 2): the prevention and treatment of chronic pain

  • Eric J. Wang (Department of Anesthesiology and Critical Care Medicine, Division of Pain Medicine, Johns Hopkins University School of Medicine) ;
  • Edward Dolomisiewicz (Department of Physical Medicine and Rehabilitation, Walter Reed National Military Medical Center) ;
  • Jay Karri (Departments of Orthopedic Surgery and Anesthesiology, University of Maryland School of Medicine) ;
  • Nuj Tontisirin (Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University) ;
  • Steven P. Cohen (Department of Anesthesiology and Critical Care Medicine, Division of Pain Medicine, Johns Hopkins University School of Medicine)
  • Received : 2023.04.26
  • Accepted : 2023.06.20
  • Published : 2023.07.01

Abstract

The discovery and development of antimicrobial therapies represents one of the most significant advancements in modern medicine. Although the primary therapeutic intent of antimicrobials is to eliminate their target pathogens, several antimicrobials have been shown to provide analgesia as a secondary benefit. Antimicrobials have demonstrated analgesic effects in conditions that involve dysbiosis or potential subclinical infection (e.g., chronic low back pain with Modic type 1 changes; chronic prostatitis/chronic pelvic pain; irritable bowel syndrome; inflammatory bowel disease; functional gastrointestinal disorders/dyspepsia; myalgic encephalomyelitis/chronic fatigue syndrome), and might even prevent the chronification of pain after acute infections that are associated with excessive systemic inflammation (e.g., post COVID-19 condition/long Covid, rheumatic fever). Clinical studies often assess the analgesic effects of antimicrobial therapies in an observational manner, without the ability to identify causative relationships, and significant gaps in the understanding remain regarding the analgesic potential of antimicrobials. Numerous interrelated patient-specific, antimicrobial-specific, and disease-specific factors altogether contribute to the perception and experience of pain, and each of these requires further study. Given worldwide concerns regarding antimicrobial resistance, antimicrobials must continue to be used judiciously and are unlikely to be repurposed as primary analgesic medications. However, when equipoise exists among several antimicrobial treatment options, the potential analgesic benefits of certain antimicrobial agents might be a valuable aspect to consider in clinical decision-making. This article (the second in a two-part series) aims to comprehensively review the evidence on the prevention and treatment of chronic pain using antimicrobial therapies and suggest a framework for future studies on this topic.

Keywords

Acknowledgement

Dr. Cohen's effort was funded in part by a grant from MIR-ROR, Uniformed Services University of the Health Sciences, U.S. Department of Defense, grant # HU00011920011. The views expressed in this article are those of the authors and do not necessarily reflect the official policy of the U.S. Department of Defense or the U.S. Government.

References

  1. Hyson JM Jr. A history of arsenic in dentistry. J Calif Dent Assoc 2007; 35: 135-9.
  2. Zhao M, Li Y, Wang Z. Mercury and mercury-containing preparations: history of use, clinical applications, pharmacology, toxicology, and pharmacokinetics in traditional Chinese medicine. Front Pharmacol 2022; 13: 807807.
  3. Parapia LA. History of bloodletting by phlebotomy. Br J Haematol 2008; 143: 490-5. https://doi.org/10.1111/j.1365-2141.2008.07361.x
  4. Sun L, Lutz BM, Tao YX. Chapter 48 - contribution of spinal cord mTORC1 to chronic opioid tolerance and hyperalgesia. In: Neuropathology of drug addictions and substance misuse. Edited by Preedy VR. Academic Press. 2016, pp 482-9.
  5. Yeo JH, Kim SJ, Roh DH. Rapamycin reduces orofacial nociceptive responses and microglial p38 mitogen-activated protein kinase phosphorylation in trigeminal nucleus caudalis in mouse orofacial formalin model. Korean J Physiol Pharmacol 2021; 25: 365-74. https://doi.org/10.4196/kjpp.2021.25.4.365
  6. Feng T, Yin Q, Weng ZL, Zhang JC, Wang KF, Yuan SY, et al. Rapamycin ameliorates neuropathic pain by activating autophagy and inhibiting interleukin-1β in the rat spinal cord. J Huazhong Univ Sci Technolog Med Sci 2014; 34: 830-7. https://doi.org/10.1007/s11596-014-1361-6
  7. Ahmed MS, Wang P, Nguyen NUN, Nakada Y, Menendez-Montes I, Ismail M, et al. Identification of tetracycline combinations as EphB1 tyrosine kinase inhibitors for treatment of neuropathic pain. Proc Natl Acad Sci U S A 2021; 118: e2016265118.
  8. Chen WF, Huang SY, Liao CY, Sung CS, Chen JY, Wen ZH. The use of the antimicrobial peptide piscidin (PCD)-1 as a novel anti-nociceptive agent. Biomaterials 2015; 53: 1-11. https://doi.org/10.1016/j.biomaterials.2015.02.069
  9. Chang DJ, Lamothe M, Stevens RM, Sigal LH. Dapsone in rheumatoid arthritis. Semin Arthritis Rheum 1996; 25: 390-403. https://doi.org/10.1016/S0049-0172(96)80004-7
  10. Hajhashemi V, Hosseinzadeh H, Amin B. Antiallodynia and antihyperalgesia effects of ceftriaxone in treatment of chronic neuropathic pain in rats. Acta Neuropsychiatr 2013; 25: 27-32. https://doi.org/10.1111/j.1601-5215.2012.00656.x
  11. Abdelaziz DM, Stone LS, Komarova SV. Osteolysis and pain due to experimental bone metastases are improved by treatment with rapamycin. Breast Cancer Res Treat 2014; 143: 227-37. https://doi.org/10.1007/s10549-013-2799-0
  12. Albert HB, Sorensen JS, Christensen BS, Manniche C. Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized clinical controlled trial of efficacy. Eur Spine J 2013; 22: 697-707. https://doi.org/10.1007/s00586-013-2675-y
  13. Braten LCH, Rolfsen MP, Espeland A, Wigemyr M, Assmus J, Froholdt A, et al.; AIM study group. Efficacy of antibiotic treatment in patients with chronic low back pain and Modic changes (the AIM study): double blind, randomised, placebo controlled, multicentre trial. BMJ 2019; 367: l5654.
  14. Haight ES, Johnson EM, Carroll IR, Tawfik VL. Of mice, microglia, and (wo)men: a case series and mechanistic investigation of hydroxychloroquine for complex regional pain syndrome. Pain Rep 2020; 5: e841.
  15. Zhou YQ, Liu DQ, Chen SP, Sun J, Wang XM, Tian YK, et al. Minocycline as a promising therapeutic strategy for chronic pain. Pharmacol Res 2018; 134: 305-10. https://doi.org/10.1016/j.phrs.2018.07.002
  16. Cohen JI. Clinical practice: herpes zoster. N Engl J Med 2013; 369: 255-63. https://doi.org/10.1056/NEJMcp1302674
  17. Devor M. Rethinking the causes of pain in herpes zoster and postherpetic neuralgia: the ectopic pacemaker hypothesis. Pain Rep 2018; 3: e702.
  18. Sauerbrei A. Diagnosis, antiviral therapy, and prophylaxis of varicella-zoster virus infections. Eur J Clin Microbiol Infect Dis 2016; 35: 723-34. https://doi.org/10.1007/s10096-016-2605-0
  19. Chen N, Li Q, Yang J, Zhou M, Zhou D, He L. Antiviral treatment for preventing postherpetic neuralgia. Cochrane Database Syst Rev 2014; 2: CD006866.
  20. Huff JC, Bean B, Balfour HH Jr, Laskin OL, Connor JD, Corey L, et al. Therapy of herpes zoster with oral acyclovir. Am J Med 1988; 85: 84-9. https://doi.org/10.1016/0002-9343(88)90508-6
  21. Harding SP, Porter SM. Oral acyclovir in herpes zoster ophthalmicus. Curr Eye Res 1991; 10 Suppl: 177-82. https://doi.org/10.3109/02713689109020376
  22. Wood MJ, Johnson RW, McKendrick MW, Taylor J, Mandal BK, Crooks J. A randomized trial of acyclovir for 7 days or 21 days with and without prednisolone for treatment of acute herpes zoster. N Engl J Med 1994; 330: 896-900. https://doi.org/10.1056/NEJM199403313301304
  23. Whitley RJ, Weiss H, Gnann JW Jr, Tyring S, Mertz GJ, Pappas PG, et al. Acyclovir with and without prednisone for the treatment of herpes zoster. A randomized, placebo-controlled trial. The National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. Ann Intern Med 1996; 125: 376-83. https://doi.org/10.7326/0003-4819-125-5-199609010-00004
  24. Wood MJ, Ogan PH, McKendrick MW, Care CD, McGill JI, Webb EM. Efficacy of oral acyclovir treatment of acute herpes zoster. Am J Med 1988; 85: 79-83.
  25. Morton P, Thomson AN. Oral acyclovir in the treatment of herpes zoster in general practice. N Z Med J 1989; 102: 93-5.
  26. Li Q, Chen N, Yang J, Zhou M, Zhou D, Zhang Q, et al. Antiviral treatment for preventing postherpetic neuralgia. Cochrane Database Syst Rev 2009; 2: CD006866.
  27. O'Mahoney LL, Routen A, Gillies C, Ekezie W, Welford A, Zhang A, et al. The prevalence and long-term health effects of Long Covid among hospitalised and non-hospitalised populations: a systematic review and meta-analysis. EClinicalMedicine 2022; 55: 101762. Erratum in: EClinicalMedicine 2023; 59: 101959.
  28. World Health Organization. Post COVID-19 condition (Long COVID) [Internet]. Geneva: World Health Organization; 2022. Available at: https://www.who.int/europe/news-room/fact-sheets/item/post-covid-19-condition
  29. NHS inform. What is long COVID? [Internet]. NHS inform; 2022. Available at: https://www.nhsinform.scot/long-term-effects-of-covid-19-long-covid/about-long-covid/what-is-long-covid
  30. COVID.gov. COVID.gov/longcovid - Virus that causes COVID-19 can experience long-term effects from their infection [Internet]. Washington, D.C.: U.S. Department of Health and Human Services; 2023. Available at: https://www.covid.gov/longcovid
  31. Perlis RH, Santillana M, Ognyanova K, Safarpour A, Lunz Trujillo K, Simonson MD, et al. Prevalence and correlates of long COVID symptoms among US adults. JAMA Netw Open 2022; 5: e2238804.
  32. Soares FHC, Kubota GT, Fernandes AM, Hojo B, Couras C, Costa BV, et al.; "Pain in the Pandemic Initiative Collaborators". Prevalence and characteristics of new-onset pain in COVID-19 survivours, a controlled study. Eur J Pain 2021; 25: 1342-54. https://doi.org/10.1002/ejp.1755
  33. Xie Y, Choi T, Al-Aly Z. Nirmatrelvir and the risk of post-acute sequelae of COVID-19. medRxiv [Preprint]. 2022 [cited 2023 Feb 11]. Available at: https://www.medrxiv.org/content/10.1101/2022.11.03.22281783v1.abstract
  34. Peluso MJ, Anglin K, Durstenfeld MS, Martin JN, Kelly JD, Hsue PY, et al. Effect of oral nirmatrelvir on long COVID symptoms: 4 cases and rationale for systematic studies. Pathog Immun 2022; 7: 95-103. https://doi.org/10.20411/pai.v7i1.518
  35. Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol 2023; 21: 133-46. Erratum in: Nat Rev Microbiol 2023; 21: 408.
  36. Abu Hamdh B, Nazzal Z. A prospective cohort study assessing the relationship between long-COVID symptom incidence in COVID-19 patients and COVID-19 vaccination. Sci Rep 2023; 13: 4896.
  37. Taquet M, Dercon Q, Harrison PJ. Six-month sequelae of post-vaccination SARS-CoV-2 infection: a retrospective cohort study of 10,024 breakthrough infections. Brain Behav Immun 2022; 103: 154-62. https://doi.org/10.1016/j.bbi.2022.04.013
  38. Byambasuren O, Stehlik P, Clark J, Alcorn K, Glasziou P. Effect of covid-19 vaccination on long covid: systematic review. BMJ Med 2023; 2: e000385.
  39. Azzolini E, Levi R, Sarti R, Pozzi C, Mollura M, Mantovani A, et al. Association between BNT162b2 vaccination and long COVID after infections not requiring hospitalization in health care workers. JAMA 2022; 328: 676-8. https://doi.org/10.1001/jama.2022.11691
  40. Tsuchida T, Hirose M, Inoue Y, Kunishima H, Otsubo T, Matsuda T. Relationship between changes in symptoms and antibody titers after a single vaccination in patients with Long COVID. J Med Virol 2022; 94: 3416-20. https://doi.org/10.1002/jmv.27689
  41. Karthikeyan G, Guilherme L. Acute rheumatic fever. Lancet 2018; 392: 161-74. Erratum in: Lancet 2018; 392: 820. https://doi.org/10.1016/S0140-6736(18)30999-1
  42. Gewitz MH, Baltimore RS, Tani LY, Sable CA, Shulman ST, Carapetis J, et al.; American Heart Association Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease of the Council on Cardiovascular Disease in the Young. Revision of the Jones Criteria for the diagnosis of acute rheumatic fever in the era of Doppler echocardiography: a scientific statement from the American Heart Association. Circulation 2015; 131: 1806-18. Erratum in: Circulation 2020; 142: e65.
  43. Gerber MA, Baltimore RS, Eaton CB, Gewitz M, Rowley AH, Shulman ST, et al. Prevention of rheumatic fever and diagnosis and treatment of acute Streptococcal pharyngitis: a scientific statement from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee of the Council on Cardiovascular Disease in the Young, the Interdisciplinary Council on Functional Genomics and Translational Biology, and the Interdisciplinary Council on Quality of Care and Outcomes Research: endorsed by the American Academy of Pediatrics. Circulation 2009; 119: 1541-51. https://doi.org/10.1161/CIRCULATIONAHA.109.191959
  44. Robertson KA, Volmink JA, Mayosi BM. Antibiotics for the primary prevention of acute rheumatic fever: a meta-analysis. BMC Cardiovasc Disord 2005; 5: 11.
  45. Kumar RK, Antunes MJ, Beaton A, Mirabel M, Nkomo VT, Okello E, et al.; American Heart Association Council on Lifelong Congenital Heart Disease and Heart Health in the Young; Council on Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology. Contemporary diagnosis and management of rheumatic heart disease: implications for closing the gap: a scientific statement from the American Heart Association. Circulation 2020; 142: e337-57. Erratum in: Circulation 2021; 143: e1025-6. https://doi.org/10.1161/CIR.0000000000000921
  46. Lennon D, Kerdemelidis M, Arroll B. Meta-analysis of trials of streptococcal throat treatment programs to prevent rheumatic fever. Pediatr Infect Dis J 2009; 28: e259-64. https://doi.org/10.1097/INF.0b013e3181a8e12a
  47. Lennon D, Stewart J, Farrell E, Palmer A, Mason H. School-based prevention of acute rheumatic fever: a group randomized trial in New Zealand. Pediatr Infect Dis J 2009; 28: 787-94. https://doi.org/10.1097/INF.0b013e3181a282be
  48. Lennon D, Anderson P, Kerdemilidis M, Farrell E, Crengle Mahi S, Percival T, et al. First presentation acute rheumatic fever is preventable in a community setting: a school-based intervention. Pediatr Infect Dis J 2017; 36: 1113-8. https://doi.org/10.1097/INF.0000000000001581
  49. Cohen SP, Wang EJ, Doshi TL, Vase L, Cawcutt KA, Tontisirin N. Chronic pain and infection: mechanisms, causes, conditions, treatments, and controversies. BMJ Med 2022; 1: e000108.
  50. Gilligan CJ, Cohen SP, Fischetti VA, Hirsch JA, Czaplewski LG. Chronic low back pain, bacterial infection and treatment with antibiotics. Spine J 2021; 21: 903-14. https://doi.org/10.1016/j.spinee.2021.02.013
  51. Anothaisintawee T, Attia J, Nickel JC, Thammakraisorn S, Numthavaj P, McEvoy M, et al. Management of chronic prostatitis/chronic pelvic pain syndrome: a systematic review and network meta-analysis. JAMA 2011; 305: 78-86. https://doi.org/10.1001/jama.2010.1913
  52. Franco JV, Turk T, Jung JH, Xiao YT, Iakhno S, Tirapegui FI, et al. Pharmacological interventions for treating chronic prostatitis/chronic pelvic pain syndrome. Cochrane Database Syst Rev 2019; 10: CD012552.
  53. Drossman DA, Hasler WL. Rome IV-functional GI disorders: disorders of gut-brain interaction. Gastroenterology 2016; 150: 1257-61. https://doi.org/10.1053/j.gastro.2016.03.035
  54. Palsson OS, Whitehead WE, van Tilburg MA, Chang L, Chey W, Crowell MD, et al. Rome IV diagnostic questionnaires and tables for investigators and clinicians. Gastroenterology 2016: S0016-5085(16)00180-3.
  55. Barbara G, Feinle-Bisset C, Ghoshal UC, Quigley EM, Santos J, Vanner S, et al. The intestinal microenvironment and functional gastrointestinal disorders. Gastroenterology 2016: S0016-5085(16)00219-5.
  56. Ford AC, Harris L A , Lacy BE, Quigley EMM, Moayyedi P. Systematic review with meta-analysis: the efficacy of prebiotics, probiotics, synbiotics and antibiotics in irritable bowel syndrome. Aliment Pharmacol Ther 2018; 48: 1044-60. https://doi.org/10.1111/apt.15001
  57. Black CJ, Burr NE, Camilleri M, Earnest DL, Quigley EM, Moayyedi P, et al. Efficacy of pharmacological therapies in patients with IBS with diarrhoea or mixed stool pattern: systematic review and network meta-analysis. Gut 2020; 69: 74-82. https://doi.org/10.1136/gutjnl-2018-318160
  58. Lacy BE, Pimentel M, Brenner DM, Chey WD, Keefer LA, Long MD, et al. ACG clinical guideline: management of irritable bowel syndrome. Am J Gastroenterol 2021; 116: 17-44. https://doi.org/10.14309/ajg.0000000000001036
  59. Lembo A, Sultan S, Chang L, Heidelbaugh JJ, Smalley W, Verne GN. AGA clinical practice guideline on the pharmacological management of irritable bowel syndrome with diarrhea. Gastroenterology 2022; 163: 137-51. https://doi.org/10.1053/j.gastro.2022.04.017
  60. Rosen MJ, Dhawan A, Saeed SA. Inflammatory bowel disease in children and adolescents. JAMA Pediatr 2015; 169: 1053-60. https://doi.org/10.1001/jamapediatrics.2015.1982
  61. Shaw SY, Blanchard JF, Bernstein CN. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am J Gastroenterol 2010; 105: 2687-92. https://doi.org/10.1038/ajg.2010.398
  62. Gomollon F, Dignass A, Annese V, Tilg H, Van Assche G, Lindsay JO, et al.; ECCO. 3rd European evidence-based consensus on the diagnosis and management of Crohn's disease 2016: Part 1: diagnosis and medical management. J Crohns Colitis 2017; 11: 3-25. https://doi.org/10.1093/ecco-jcc/jjw168
  63. Singh S, Allegretti JR, Siddique SM, Terdiman JP. AGA technical review on the management of moderate to severe ulcerative colitis. Gastroenterology 2020; 158: 1465-96.e17. https://doi.org/10.1053/j.gastro.2020.01.007
  64. Townsend CM, Parker CE, MacDonald JK, Nguyen TM, Jairath V, Feagan BG, et al. Antibiotics for induction and maintenance of remission in Crohn's disease. Cochrane Database Syst Rev 2019; 2: CD012730.
  65. Norton C, Czuber-Dochan W, Artom M, Sweeney L, Hart A. Systematic review: interventions for abdominal pain management in inflammatory bowel disease. Aliment Pharmacol Ther 2017; 46: 115-25. https://doi.org/10.1111/apt.14108
  66. Castiglione F, Rispo A, Di Girolamo E, Cozzolino A, Manguso F, Grassia R, et al. Antibiotic treatment of small bowel bacterial overgrowth in patients with Crohn's disease. Aliment Pharmacol Ther 2003; 18: 1107-12. https://doi.org/10.1046/j.1365-2036.2003.01800.x
  67. Oustamanolakis P, Tack J. Dyspepsia: organic versus functional. J Clin Gastroenterol 2012; 46: 175-90. https://doi.org/10.1097/MCG.0b013e318241b335
  68. Ford AC, Mahadeva S, Carbone MF, Lacy BE, Talley NJ. Functional dyspepsia. Lancet 2020; 396: 1689-702. https://doi.org/10.1016/S0140-6736(20)30469-4
  69. Du LJ, Chen BR, Kim JJ, Kim S, Shen JH, Dai N. Helicobacter pylori eradication therapy for functional dyspepsia: systematic review and meta-analysis. World J Gastroenterol 2016; 22: 3486-95. https://doi.org/10.3748/wjg.v22.i12.3486
  70. Kang SJ, Park B, Shin CM. Helicobacter pylori eradication therapy for functional dyspepsia: a metaanalysis by region and H. pylori prevalence. J Clin Med 2019; 8: 1324.
  71. Ford AC, Tsipotis E, Yuan Y, Leontiadis GI, Moayyedi P. Efficacy of Helicobacter pylori eradication therapy for functional dyspepsia: updated systematic review and meta-analysis. Gut 2022: gutjnl-2021-326583.
  72. Malfertheiner P, Megraud F, O'Morain CA, Gisbert JP, Kuipers EJ, Axon AT, et al.; European Helicobacter and Microbiota Study Group and Consensus panel. Management of Helicobacter pylori infection-the Maastricht V/Florence Consensus Report. Gut 2017; 66: 6-30. https://doi.org/10.1136/gutjnl-2016-312288
  73. Suzuki H, Nishizawa T, Hibi T. Can Helicobacter pylori-associated dyspepsia be categorized as functional dyspepsia? J Gastroenterol Hepatol 2011; 26 Suppl 3: 42-5. https://doi.org/10.1111/j.1440-1746.2011.06629.x
  74. Sugano K, Tack J, Kuipers EJ, Graham DY, El-Omar EM, Miura S, et al.; faculty members of Kyoto Global Consensus Conference. Kyoto global consensus report on Helicobacter pylori gastritis. Gut 2015; 64: 1353-67. https://doi.org/10.1136/gutjnl-2015-309252
  75. Carruthers BM, van de Sande MI, De Meirleir KL, Klimas NG, Broderick G, Mitchell T, et al. Myalgic encephalomyelitis: International Consensus Criteria. J Intern Med 2011; 270: 327-38. Erratum in: J Intern Med 2017; 282: 353.
  76. Bateman L, Bested AC, Bonilla HF, Chheda BV, Chu L, Curtin JM, et al. Myalgic encephalomyelitis/chronic fatigue syndrome: essentials of diagnosis and management. Mayo Clin Proc 2021; 96: 2861-78. https://doi.org/10.1016/j.mayocp.2021.07.004
  77. Rasa S, Nora-Krukle Z, Henning N, Eliassen E, Shikova E, Harrer T, et al.; European Network on ME/CFS (EUROMENE). Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J Transl Med 2018; 16: 268.
  78. Wong TL, Weitzer DJ. Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)-A systemic review and comparison of clinical presentation and symptomatology. Medicina (Kaunas) 2021; 57: 418.
  79. Komaroff AL, Lipkin WI. Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of postacute COVID-19 syndrome. Trends Mol Med 2021; 27: 895-906. https://doi.org/10.1016/j.molmed.2021.06.002
  80. Komaroff AL, Bateman L. Will COVID-19 lead to myalgic encephalomyelitis/chronic fatigue syndrome? Front Med (Lausanne) 2021; 7: 606824.
  81. Konig RS, Albrich WC, Kahlert CR, Bahr LS, Lober U, Vernazza P, et al. The gut microbiome in myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS). Front Immunol 2022; 12: 628741. Erratum in: Front Immunol 2022; 13: 878196.
  82. Ianiro G, Tilg H, Gasbarrini A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut 2016; 65: 1906-15. https://doi.org/10.1136/gutjnl-2016-312297
  83. Smith ME, Haney E, McDonagh M, Pappas M, Daeges M, Wasson N, et al. Treatment of myalgic encephalomyelitis/chronic fatigue syndrome: a systematic review for a national institutes of health pathways to prevention workshop. Ann Intern Med 2015; 162: 841-50. https://doi.org/10.7326/M15-0114
  84. Strayer DR, Carter WA, Brodsky I, Cheney P, Peterson D, Salvato P, et al. A controlled clinical trial with a specifically configured RNA drug, poly(I). poly(C12U), in chronic fatigue syndrome. Clin Infect Dis 1994; 18 Suppl 1: S88-95. https://doi.org/10.1093/clinids/18.Supplement_1.S88
  85. Strayer DR, Carter WA, Stouch BC, Stevens SR, Bateman L, Cimoch PJ, et al.; Chronic Fatigue Syndrome AMP-516 Study Group; Mitchell WM. A double-blind, placebo-controlled, randomized, clinical trial of the TLR-3 agonist rintatolimod in severe cases of chronic fatigue syndrome. PLoS One 2012; 7: e31334.
  86. Montoya JG, Kogelnik AM, Bhangoo M, Lunn MR, Flamand L, Merrihew LE, et al. Randomized clinical trial to evaluate the efficacy and safety of valganciclovir in a subset of patients with chronic fatigue syndrome. J Med Virol 2013; 85: 2101-9. https://doi.org/10.1002/jmv.23713
  87. Peterson PK, Shepard J, Macres M, Schenck C, Crosson J, Rechtman D, et al. A controlled trial of intravenous immunoglobulin G in chronic fatigue syndrome. Am J Med 1990; 89: 554-60. https://doi.org/10.1016/0002-9343(90)90172-A
  88. Straus SE, Dale JK, Tobi M, Lawley T, Preble O, Blaese RM, et al. Acyclovir treatment of the chronic fatigue syndrome. Lack of efficacy in a placebo-controlled trial. N Engl J Med 1988; 319: 1692-8. https://doi.org/10.1056/NEJM198812293192602
  89. Watt T, Oberfoell S, Balise R, Lunn MR, Kar AK, Merrihew L, et al. Response to valganciclovir in chronic fatigue syndrome patients with human herpesvirus 6 and Epstein-Barr virus IgG antibody titers. J Med Virol 2012; 84: 1967-74. https://doi.org/10.1002/jmv.23411
  90. Theuretzbacher U, Outterson K, Engel A, Karlen A. The global preclinical antibacterial pipeline. Nat Rev Microbiol 2020; 18: 275-85. https://doi.org/10.1038/s41579-019-0288-0