과제정보
This work was supported by the National Research Foundation (NRF), funded by the Ministry of Science and ICT, Republic of Korea (No. 2021R1C1C1008587), the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), and Korea Dementia Research Center (KDRC) funded by the Ministry of Health & Welfare and Ministry of Science and ICT, Republic of Korea (No. HU22C0069), and the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare, the Republic of Korea (No. HI22C1236).
참고문헌
- Alborzinia, H., Ignashkova, T.I., Dejure, F.R., Gendarme, M., Theobald, J., Wolfl, S., Lindemann, R.K., and Reiling, J.H. (2018). Golgi stress mediates redox imbalance and ferroptosis in human cells. Commun. Biol. 1, 210.
- Alvarez-Erviti, L., Rodriguez-Oroz, M.C., Cooper, J.M., Caballero, C., Ferrer, I., Obeso, J.A., and Schapira, A.H. (2010). Chaperone-mediated autophagy markers in Parkinson disease brains. Arch. Neurol. 67, 1464-1472. https://doi.org/10.1001/archneurol.2010.198
- Bae, E.J., Lee, H.J., Rockenstein, E., Ho, D.H., Park, E.B., Yang, N.Y., Desplats, P., Masliah, E., and Lee, S.J. (2012). Antibody-aided clearance of extracellular alpha-synuclein prevents cell-to-cell aggregate transmission. J. Neurosci. 32, 13454-13469. https://doi.org/10.1523/JNEUROSCI.1292-12.2012
- Baghban, R., Roshangar, L., Jahanban-Esfahlan, R., Seidi, K., Ebrahimi-Kalan, A., Jaymand, M., Kolahian, S., Javaheri, T., and Zare, P. (2020). Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal. 18, 59.
- Bajaj, R., Warner, A.N., Fradette, J.F., and Gibbons, D.L. (2022). Dance of the Golgi: understanding Golgi dynamics in cancer metastasis. Cells 11, 1484.
- Bascil Tutuncu, N., Verdi, H., Yalcin, Y., Baysan Cebi, P., Kinik, S., Tutuncu, T., and Atac, F.B. (2022). Beta-cell Golgi stress response to lipotoxicity and glucolipotoxicity: a preliminary study of a potential mechanism of beta-cell failure in posttransplant diabetes and intraportal islet transplant. Exp. Clin. Transplant. 20, 585-594. https://doi.org/10.6002/ect.2022.0027
- Baumann, J., Ignashkova, T.I., Chirasani, S.R., Ramirez-Peinado, S., Alborzinia, H., Gendarme, M., Kuhnigk, K., Kramer, V., Lindemann, R.K., and Reiling, J.H. (2018). Golgi stress-induced transcriptional changes mediated by MAPK signaling and three ETS transcription factors regulate MCL1 splicing. Mol. Biol. Cell 29, 42-52. https://doi.org/10.1091/mbc.E17-06-0418
- Bayer, T.A. (2015). Proteinopathies, a core concept for understanding and ultimately treating degenerative disorders? Eur. Neuropsychopharmacol. 25, 713-724. https://doi.org/10.1016/j.euroneuro.2013.03.007
- Beckmann, H., Su, L.K., and Kadesch, T. (1990). TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer muE3 motif. Genes Dev. 4, 167-179. https://doi.org/10.1101/gad.4.2.167
- Bone, R.N., Oyebamiji, O., Talware, S., Selvaraj, S., Krishnan, P., Syed, F., Wu, H., and Evans-Molina, C. (2020). A computational approach for defining a signature of beta-cell Golgi stress in diabetes. Diabetes 69, 2364-2376. https://doi.org/10.2337/db20-0636
- Boss, W.F., Morre, D.J., and Mollenhauer, H.H. (1984). Monensin-induced swelling of Golgi apparatus cisternae mediated by a proton gradient. Eur. J. Cell Biol. 34, 1-8.
- Bui, S., Mejia, I., Diaz, B., and Wang, Y. (2021). Adaptation of the Golgi apparatus in cancer cell invasion and metastasis. Front. Cell Dev. Biol. 9, 806482.
- Cancino, J. and Luini, A. (2013). Signaling circuits on the Golgi complex. Traffic 14, 121-134. https://doi.org/10.1111/tra.12022
- Chang, K.H., Lee, L., Chen, J., and Li, W.S. (2006). Lithocholic acid analogues, new and potent alpha-2,3-sialyltransferase inhibitors. Chem. Commun. (Camb.) (6), 629-631.
- Chen, J. and Chen, Z.J. (2018). PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 564, 71-76. https://doi.org/10.1038/s41586-018-0761-3
- Chiti, F. and Dobson, C.M. (2017). Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 86, 27-68. https://doi.org/10.1146/annurev-biochem-061516-045115
- De Niz, M., Caldelari, R., Kaiser, G., Zuber, B., Heo, W.D., Heussler, V.T., and Agop-Nersesian, C. (2021). Hijacking of the host cell Golgi by Plasmodium berghei liver stage parasites. J. Cell Sci. 134, jcs252213.
- Deleidi, M. and Maetzler, W. (2012). Protein clearance mechanisms of alpha-synuclein and amyloid-Beta in lewy body disorders. Int. J. Alzheimers Dis. 2012, 391438.
- Deng, S., Hu, Q., Chen, X., Lei, Q., and Lu, W. (2022). GM130 protects against blood-brain barrier disruption and brain injury after intracerebral hemorrhage by regulating autophagy formation. Exp. Gerontol. 163, 111772.
- Duden, R. (2003). ER-to-Golgi transport: COP I and COP II function (Review). Mol. Membr. Biol. 20, 197-207. https://doi.org/10.1080/0968768031000122548
- Eisenberg-Lerner, A., Benyair, R., Hizkiahou, N., Nudel, N., Maor, R., Kramer, M.P., Shmueli, M.D., Zigdon, I., Cherniavsky Lev, M., Ulman, A., et al. (2020). Golgi organization is regulated by proteasomal degradation. Nat. Commun. 11, 409.
- Ellinger, A. and Pavelka, M. (1984). Effect of monensin on the Golgi apparatus of absorptive cells in the small intestine of the rat. Morphological and cytochemical studies. Cell Tissue Res. 235, 187-194. https://doi.org/10.1007/BF00213739
- Farber-Katz, S.E., Dippold, H.C., Buschman, M.D., Peterman, M.C., Xing, M., Noakes, C.J., Tat, J., Ng, M.M., Rahajeng, J., Cowan, D.M., et al. (2014). DNA damage triggers Golgi dispersal via DNA-PK and GOLPH3. Cell 156, 413-427. https://doi.org/10.1016/j.cell.2013.12.023
- Feng, Y., Jadhav, A.P., Rodighiero, C., Fujinaga, Y., Kirchhausen, T., and Lencer, W.I. (2004). Retrograde transport of cholera toxin from the plasma membrane to the endoplasmic reticulum requires the trans-Golgi network but not the Golgi apparatus in Exo2-treated cells. EMBO Rep. 5, 596-601. https://doi.org/10.1038/sj.embor.7400152
- Hannun, Y.A. and Obeid, L.M. (2018). Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 175-191. https://doi.org/10.1038/nrm.2017.107
- Hartl, F.U. (2017). Protein misfolding diseases. Annu. Rev. Biochem. 86, 21-26. https://doi.org/10.1146/annurev-biochem-061516-044518
- He, Q., Liu, H., Huang, C., Wang, R., Luo, M., and Lu, W. (2020). Herpes simplex virus 1-induced blood-brain barrier damage involves apoptosis associated with GM130-mediated Golgi stress. Front. Mol. Neurosci. 13, 2.
- He, Z., Liu, D., Liu, Y., Li, X., Shi, W., and Ma, H. (2022). Golgi-targeted fluorescent probe for imaging NO in Alzheimer's disease. Anal. Chem. 94, 10256-10262. https://doi.org/10.1021/acs.analchem.2c01885
- Howley, B.V. and Howe, P.H. (2018). Metastasis-associated upregulation of ER-Golgi trafficking kinetics: regulation of cancer progression via the Golgi apparatus. Oncoscience 5, 142-143. https://doi.org/10.18632/oncoscience.426
- Howley, B.V., Link, L.A., Grelet, S., El-Sabban, M., and Howe, P.H. (2018). A CREB3-regulated ER-Golgi trafficking signature promotes metastatic progression in breast cancer. Oncogene 37, 1308-1325. https://doi.org/10.1038/s41388-017-0023-0
- Jamaludin, M.I., Wakabayashi, S., Taniguchi, M., Sasaki, K., Komori, R., Kawamura, H., Takase, H., Sakamoto, M., and Yoshida, H. (2019). MGSE regulates crosstalk from the mucin pathway to the TFE3 pathway of the Golgi stress response. Cell Struct. Funct. 44, 137-151. https://doi.org/10.1247/csf.19009
- Kellokumpu, S., Sormunen, R., and Kellokumpu, I. (2002). Abnormal glycosylation and altered Golgi structure in colorectal cancer: dependence on intra-Golgi pH. FEBS Lett. 516, 217-224. https://doi.org/10.1016/S0014-5793(02)02535-8
- Klumperman, J. (2000). Transport between ER and Golgi. Curr. Opin. Cell Biol. 12, 445-449. https://doi.org/10.1016/S0955-0674(00)00115-0
- Kumar, V., Sami, N., Kashav, T., Islam, A., Ahmad, F., and Hassan, M.I. (2016). Protein aggregation and neurodegenerative diseases: from theory to therapy. Eur. J. Med. Chem. 124, 1105-1120. https://doi.org/10.1016/j.ejmech.2016.07.054
- Lawrence, R.E., Fromm, S.A., Fu, Y., Yokom, A.L., Kim, D.J., Thelen, A.M., Young, L.N., Lim, C.Y., Samelson, A.J., Hurley, J.H., et al. (2019). Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex. Science 366, 971-977. https://doi.org/10.1126/science.aax0364
- Lee, M.C., Miller, E.A., Goldberg, J., Orci, L., and Schekman, R. (2004). Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol. 20, 87-123. https://doi.org/10.1146/annurev.cellbio.20.010403.105307
- Li, H., Deng, C., Tan, Y., Dong, J., Zhao, Y., Wang, X., Yang, X., Luo, J., Gao, H., Huang, Y., et al. (2022a). Chondroitin sulfate-based prodrug nanoparticles enhance photodynamic immunotherapy via Golgi apparatus targeting. Acta Biomater. 146, 357-369. https://doi.org/10.1016/j.actbio.2022.05.014
- Li, J., Ahat, E., and Wang, Y. (2019). Golgi structure and function in health, stress, and diseases. Results Probl. Cell Differ. 67, 441-485. https://doi.org/10.1007/978-3-030-23173-6_19
- Li, S., Yang, K., Zeng, J., Ding, Y., Cheng, D., and He, L. (2022b). Golgi-targeting fluorescent probe for monitoring CO-releasing molecule-3 in vitro and in vivo. ACS Omega 7, 9929-9935. https://doi.org/10.1021/acsomega.2c00422
- Li, T., You, H., Mo, X., He, W., Tang, X., Jiang, Z., Chen, S., Chen, Y., Zhang, J., and Hu, Z. (2016). GOLPH3 mediated Golgi stress response in modulating N2A cell death upon oxygen-glucose deprivation and reoxygenation injury. Mol. Neurobiol. 53, 1377-1385. https://doi.org/10.1007/s12035-014-9083-0
- Li, X., Yu, J., Gong, L., Zhang, Y., Dong, S., Shi, J., Li, C., Li, Y., Zhang, Y., and Li, H. (2021). Heme oxygenase-1(HO-1) regulates Golgi stress and attenuates endotoxin-induced acute lung injury through hypoxia inducible factor-1α (HIF-1α)/HO-1 signaling pathway. Free Radic. Biol. Med. 165, 243-253. https://doi.org/10.1016/j.freeradbiomed.2021.01.028
- Liu, J., Huang, Y., Li, T., Jiang, Z., Zeng, L., and Hu, Z. (2021). The role of the Golgi apparatus in disease (Review). Int. J. Mol. Med. 47, 38.
- Luo, Q., Liu, Q., Cheng, H., Wang, J., Zhao, T., Zhang, J., Mu, C., Meng, Y., Chen, L., Zhou, C., et al. (2022). Nondegradable ubiquitinated ATG9A organizes Golgi integrity and dynamics upon stresses. Cell Rep. 40, 111195.
- Makhoul, C., Gosavi, P., and Gleeson, P.A. (2019). Golgi dynamics: the morphology of the mammalian Golgi apparatus in health and disease. Front. Cell Dev. Biol. 7, 112.
- Mathieu, J., Detraux, D., Kuppers, D., Wang, Y., Cavanaugh, C., Sidhu, S., Levy, S., Robitaille, A.M., Ferreccio, A., Bottorff, T., et al. (2019). Folliculin regulates mTORC1/2 and WNT pathways in early human pluripotency. Nat. Commun. 10, 632.
- Meng, J.F. and Luo, M.J. (2021). CRABP2 involvement in a mechanism of Golgi stress and tumor dry matter in non-small cell lung cancer cells via ER dependent Hippo pathway. Acta Biochim. Pol. 69, 31-36. https://doi.org/10.18388/abp.2020_5543
- Miyata, S., Mizuno, T., Koyama, Y., Katayama, T., and Tohyama, M. (2013). The endoplasmic reticulum-resident chaperone heat shock protein 47 protects the Golgi apparatus from the effects of O-glycosylation inhibition. PLoS One 8, e69732.
- Mytych, J., Solek, P., Bedzinska, A., Rusinek, K., Warzybok, A., Tabecka-Lonczynska, A., and Koziorowski, M. (2020). Towards age-related anti-inflammatory therapy: klotho suppresses activation of ER and Golgi stress response in senescent monocytes. Cells 9, 261.
- Nishida, Y., Arakawa, S., Fujitani, K., Yamaguchi, H., Mizuta, T., Kanaseki, T., Komatsu, M., Otsu, K., Tsujimoto, Y., and Shimizu, S. (2009). Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461, 654-658. https://doi.org/10.1038/nature08455
- Noguchi, S. and Shimizu, S. (2022). Molecular mechanisms and biological roles of GOMED. FEBS J. 289, 7213-7220. https://doi.org/10.1111/febs.16281
- Nolfi, D., Capone, A., Rosati, F., and Della Giovampaola, C. (2020). The alpha-1,2 fucosylated tubule system of DU145 prostate cancer cells is derived from a partially fragmented Golgi complex and its formation is actin-dependent. Exp. Cell Res. 396, 112324.
- Ochiai, A., Sawaguchi, S., Memezawa, S., Seki, Y., Morimoto, T., Oizumi, H., Ohbuchi, K., Yamamoto, M., Mizoguchi, K., Miyamoto, Y., et al. (2022). Knockdown of Golgi stress-responsive caspase-2 ameliorates HLD17-associated AIMP2 mutant-mediated inhibition of oligodendroglial cell morphological differentiation. Neurochem. Res. 47, 2617-2631. https://doi.org/10.1007/s11064-021-03451-6
- Oku, M., Tanakura, S., Uemura, A., Sohda, M., Misumi, Y., Taniguchi, M., Wakabayashi, S., and Yoshida, H. (2011). Novel cis-acting element GASE regulates transcriptional induction by the Golgi stress response. Cell Struct. Funct. 36, 1-12. https://doi.org/10.1247/csf.10014
- Pandey, K.P. and Zhou, Y. (2022). Influenza A virus infection activates NLRP3 inflammasome through trans-Golgi network dispersion. Viruses 14, 88.
- Park, J.H., Chung, C.G., Seo, J., Lee, B.H., Lee, Y.S., Kweon, J.H., and Lee, S.B. (2020). C9orf72-associated arginine-rich dipeptide repeat proteins reduce the number of Golgi outposts and dendritic branches in Drosophila neurons. Mol. Cells 43, 821-830.
- Petrosyan, A. (2015). Onco-Golgi: is fragmentation a gate to cancer progression? Biochem. Mol. Biol. J. 1, 16.
- Reiling, J.H., Olive, A.J., Sanyal, S., Carette, J.E., Brummelkamp, T.R., Ploegh, H.L., Starnbach, M.N., and Sabatini, D.M. (2013). A CREB3-ARF4 signalling pathway mediates the response to Golgi stress and susceptibility to pathogens. Nat. Cell Biol. 15, 1473-1485. https://doi.org/10.1038/ncb2865
- Robineau, S., Chabre, M., and Antonny, B. (2000). Binding site of brefeldin A at the interface between the small G protein ADP-ribosylation factor 1 (ARF1) and the nucleotide-exchange factor Sec7 domain. Proc. Natl. Acad. Sci. U. S. A. 97, 9913-9918. https://doi.org/10.1073/pnas.170290597
- Rohn, W.M., Rouille, Y., Waguri, S., and Hoflack, B. (2000). Bi-directional trafficking between the trans-Golgi network and the endosomal/lysosomal system. J. Cell Sci. 113 (Pt 12), 2093-2101. https://doi.org/10.1242/jcs.113.12.2093
- Romano, J.D., Sonda, S., Bergbower, E., Smith, M.E., and Coppens, I. (2013). Toxoplasma gondii salvages sphingolipids from the host Golgi through the rerouting of selected Rab vesicles to the parasitophorous vacuole. Mol. Biol. Cell 24, 1974-1995. https://doi.org/10.1091/mbc.e12-11-0827
- Saenz, J.B., Sun, W.J., Chang, J.W., Li, J., Bursulaya, B., Gray, N.S., and Haslam, D.B. (2009). Golgicide A reveals essential roles for GBF1 in Golgi assembly and function. Nat. Chem. Biol. 5, 157-165. https://doi.org/10.1038/nchembio.144
- Sakhrani, N.M. and Padh, H. (2013). Organelle targeting: third level of drug targeting. Drug Des. Devel. Ther. 7, 585-599.
- Sasaki, K., Komori, R., Taniguchi, M., Shimaoka, A., Midori, S., Yamamoto, M., Okuda, C., Tanaka, R., Sakamoto, M., Wakabayashi, S., et al. (2019). PGSE is a novel enhancer regulating the proteoglycan pathway of the mammalian Golgi stress response. Cell Struct. Funct. 44, 1-19. https://doi.org/10.1247/csf.18031
- Sbodio, J.I., Snyder, S.H., and Paul, B.D. (2018). Golgi stress response reprograms cysteine metabolism to confer cytoprotection in Huntington's disease. Proc. Natl. Acad. Sci. U. S. A. 115, 780-785. https://doi.org/10.1073/pnas.1717877115
- Schmidt, O., Weyer, Y., Baumann, V., Widerin, M.A., Eising, S., Angelova, M., Schleiffer, A., Kremser, L., Lindner, H., Peter, M., et al. (2019). Endosome and Golgi-associated degradation (EGAD) of membrane proteins regulates sphingolipid metabolism. EMBO J. 38, e101433.
- Schwabl, S. and Teis, D. (2022). Protein quality control at the Golgi. Curr. Opin. Cell Biol. 75, 102074.
- Sewell, R., Backstrom, M., Dalziel, M., Gschmeissner, S., Karlsson, H., Noll, T., Gatgens, J., Clausen, H., Hansson, G.C., Burchell, J., et al. (2006). The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. J. Biol. Chem. 281, 3586-3594. https://doi.org/10.1074/jbc.M511826200
- Spano, D. and Colanzi, A. (2022). Golgi Complex: a signaling hub in cancer. Cells 11, 1990.
- Suga, K., Saito, A., Mishima, T., and Akagawa, K. (2015). Data for the effects of ER and Golgi stresses on the ER-Golgi SNARE Syntaxin5 expression and on the betaAPP processing in cultured hippocampal neurons. Data Brief 5, 114-123. https://doi.org/10.1016/j.dib.2015.08.023
- Suga, K., Yamamoto-Hijikata, S., Terao, Y., Akagawa, K., and Ushimaru, M. (2022). Golgi stress induces upregulation of the ER-Golgi SNARE Syntaxin-5, altered betaAPP processing, and Caspase-3-dependent apoptosis in NG108-15 cells. Mol. Cell. Neurosci. 121, 103754.
- Tamaki, H. and Yamashina, S. (2002). The stack of the golgi apparatus. Arch. Histol. Cytol. 65, 209-218. https://doi.org/10.1679/aohc.65.209
- Taniguchi, M., Nadanaka, S., Tanakura, S., Sawaguchi, S., Midori, S., Kawai, Y., Yamaguchi, S., Shimada, Y., Nakamura, Y., Matsumura, Y., et al. (2015). TFE3 is a bHLH-ZIP-type transcription factor that regulates the mammalian Golgi stress response. Cell Struct. Funct. 40, 13-30. https://doi.org/10.1247/csf.14015
- Vijayan, K., Arang, N., Wei, L., Morrison, R., Geiger, R., Parks, K.R., Lewis, A.J., Mast, F.D., Douglass, A.N., Kain, H.S., et al. (2022). A genome-wide CRISPR-Cas9 screen identifies CENPJ as a host regulator of altered microtubule organization during Plasmodium liver infection. Cell Chem. Biol. 29, 1419-1433.e5. https://doi.org/10.1016/j.chembiol.2022.06.001
- Viotti, C. (2016). ER to Golgi-dependent protein secretion: the conventional pathway. Methods Mol. Biol. 1459, 3-29. https://doi.org/10.1007/978-1-4939-3804-9_1
- Wang, H., He, Z., Yang, Y., Zhang, J., Zhang, W., Zhang, W., Li, P., and Tang, B. (2019). Ratiometric fluorescence imaging of Golgi H2O2 reveals a correlation between Golgi oxidative stress and hypertension. Chem. Sci. 10, 10876-10880. https://doi.org/10.1039/C9SC04384E
- Wang, M., Zhang, Y., Komaniecki, G.P., Lu, X., Cao, J., Zhang, M., Yu, T., Hou, D., Spiegelman, N.A., Yang, M., et al. (2022). Golgi stress induces SIRT2 to counteract Shigella infection via defatty-acylation. Nat. Commun. 13, 4494.
- Watson, P. and Stephens, D.J. (2005). ER-to-Golgi transport: form and formation of vesicular and tubular carriers. Biochim. Biophys. Acta 1744, 304-315. https://doi.org/10.1016/j.bbamcr.2005.03.003
- Willett, R., Martina, J.A., Zewe, J.P., Wills, R., Hammond, G.R.V., and Puertollano, R. (2017). TFEB regulates lysosomal positioning by modulating TMEM55B expression and JIP4 recruitment to lysosomes. Nat. Commun. 8, 1580.
- Wu, J.I., Lin, Y.P., Tseng, C.W., Chen, H.J., and Wang, L.H. (2019). Crabp2 promotes metastasis of lung cancer cells via HuR and integrin beta1/FAK/ERK signaling. Sci. Rep. 9, 845.
- Yamaguchi, H., Arakawa, S., Kanaseki, T., Miyatsuka, T., Fujitani, Y., Watada, H., Tsujimoto, Y., and Shimizu, S. (2016). Golgi membrane-associated degradation pathway in yeast and mammals. EMBO J. 35, 1991-2007. https://doi.org/10.15252/embj.201593191
- Yamaguchi, H., Honda, S., Torii, S., Shimizu, K., Katoh, K., Miyake, K., Miyake, N., Fujikake, N., Sakurai, H.T., Arakawa, S., et al. (2020). Wipi3 is essential for alternative autophagy and its loss causes neurodegeneration. Nat. Commun. 11, 5311.
- Yuen, C.T., Chai, W., Loveless, R.W., Lawson, A.M., Margolis, R.U., and Feizi, T. (1997). Brain contains HNK-1 immunoreactive O-glycans of the sulfoglucuronyl lactosamine series that terminate in 2-linked or 2,6-linked hexose (mannose). J. Biol. Chem. 272, 8924-8931. https://doi.org/10.1074/jbc.272.14.8924
- Zhang, X., Yang, B., Shao, D., Zhao, Y., Sun, J., Li, J., Li, Y., and Cao, F. (2019). Longitudinal association of subjective prospective and retrospective memory and depression among patients with glioma. Eur. J. Oncol. Nurs. 42, 1-6. https://doi.org/10.1016/j.ejon.2019.07.003
- Zhu, H., Liu, C., Rong, X., Zhang, Y., Su, M., Wang, X., Liu, M., Zhang, X., Sheng, W., and Zhu, B. (2022). A new isothiocyanate-based Golgi-targeting fluorescent probe for Cys and its bioimaging applications during the Golgi stress response. Bioorg. Chem. 122, 105741.
- Zhu, X. and Kaverina, I. (2013). Golgi as an MTOC: making microtubules for its own good. Histochem. Cell Biol. 140, 361-367. https://doi.org/10.1007/s00418-013-1119-4