DOI QR코드

DOI QR Code

고온 고분자 막 전해질 연료전지 캐소드의 가스 확산층 및 바인더 함량에 따른 완화 시간 분포(DRT) 저항 분석

Resistance Analysis by Distribution of Relaxation Time According to Gas Diffusion Layers and Binder Amounts for Cathode of High-temperature Polymer Electrolyte Membrane Fuel Cell

  • 김동희 (광주과학기술원 에너지융합대학원) ;
  • 정현승 (광주과학기술원 에너지융합대학원) ;
  • 박찬호 (광주과학기술원 에너지융합대학원)
  • DONG HEE KIM (Graduate School of Energy Convergence, Gwangju Institute of Science and Technology) ;
  • HYOEN SEUNG JUNG (Graduate School of Energy Convergence, Gwangju Institute of Science and Technology) ;
  • CHANHO PAK (Graduate School of Energy Convergence, Gwangju Institute of Science and Technology)
  • 투고 : 2023.02.15
  • 심사 : 2023.06.02
  • 발행 : 2023.06.30

초록

The physical properties were analyzed for four gas diffusion layers, and gas diffusion electrodes (GDEs) for the cathode of high-temperature polymer electrolyte membrane fuel cell were fabricated through bar coating with three binder to carbon (B/C) ratios. Among them, The GDE from JNT30-A6P showed a significant change in secondary pore volume at a B/C ratio of 0.31, which had the largest pore volume among all GDEs. In the polarization curve, JNT30-A6P GDE showed the best membrane electrode assembly (MEA) performance with a peak power density of 384 mW/cm2 at a a B/C ratio of 0.31. From the distribution of relaxation time analysis, the peak 1 corresponding to mass transfer resistance of oxygen reduction reaction (ORR) was significantly reduced in the JNT30-A6P GDE. This is the result that when the binder content decreased, the volume of the secondary pore increased, and the mass transfer resistance of ORR decreased, which played an essential role in the MEA performance.

키워드

과제정보

본 논문은 현대자동차의 연구개발과제에서 일부 지원을 받아 수행된 연구 결과입니다.

참고문헌

  1. T. M. Marteau, N. Chater, and E. E. Garnett, "Changing behaviour for net zero 2050", bmj, Vol. 375, 2021, pp. n2293, doi: https://doi.org/10.1136/bmj.n2293.
  2. R. Haider, Y. Wen, Z. F. Ma, D. P. Wilkinson, L. Zhang, X. Yuan, S. Song, and J. Zhang, "High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies", Chemical Society Reviews, Vol. 50, No. 2, 2021, pp. 1138-1187, doi: https://doi.org/10.1039/D0CS00296H.
  3. X. Zhang, D. Trieu, D. Zheng, W. Ji, H. Qu, T. Ding, D. Qiu, and D. Qu, "Nafion/PTFE composite membranes for a high temperature PEM fuel cell application", Industrial & Engineering Chemistry Research, Vol. 60, No. 30, 2021, pp. 11086-11094, doi: https://doi.org/10.1021/acs.iecr.1c01447.
  4. Y. Wang, P. Sun, Z. Li, H. Guo, H. Pei, and X. Yin, "Construction of novel proton transport channels by triphosphonic acid proton conductor-doped crosslinked mPBI-based high-temperature and low-humidity proton exchange membranes", ACS Sustainable Chemistry & Engineering, Vol. 9, No. 7, 2021, pp. 2861-2871, doi: https://doi.org/10.1021/acssuschemeng.0c08799.
  5. M. Prokop, P. Capek, M. Vesely, M. Paidar, and K. Bouzek, "High-temperature PEM fuel cell electrode catalyst layers Part 2: experimental validation of its effective transport properties", Electrochimica Acta, Vol. 413, 2022, pp. 140121, doi: https://doi.org/10.1016/j.electacta.2022.140121.
  6. Y. Ira, Y. Bakhshan, and J. Khorshidimalahmadi, "Effect of wettability heterogeneity and compression on liquid water transport in gas diffusion layer coated with microporous layer of PEMFC", International Journal of Hydrogen Energy, Vol. 46, No. 33, 2021, pp. 17397-17413, doi: https://doi.org/10.1016/j.ijhydene.2021.02.160.
  7. M. Sarker, M. A. Rahman, F. Mojica, S. Mehrazi, W. J. M. Kort-Kamp, and P. Y. A. Chuang, "Experimental and computational study of the microporous layer and hydrophobic treatment in the gas diffusion layer of a proton exchange membrane fuel cell", Journal of Power Sources, Vol. 509, pp. 230350, doi: https://doi.org/10.1016/j.jpowsour.2021.230350.
  8. J. Huang, Z. Li, B. Y. Liaw, and J. Zhang, "Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations", Journal of Power Sources, Vol. 309, 2016, pp. 82-98, doi: https://doi.org/10.1016/j.jpowsour.2016.01.073.
  9. S. Dierickx, A. Weber, and E. Ivers-Tiffee, "How the distribution of relaxation times enhances complex equivalent circuit models for fuel cells", Electrochimica Acta, Vol. 355, 20 20, pp. 136764, doi: https://doi.org/10.1016/j.electacta.2020.136764.
  10. G. A. Cohen, D. Gelman, and Y. Tsur, "Development of a typical distribution function of relaxation times model for polymer electrolyte membrane fuel cells and quantifying the resistance to proton conduction within the catalyst layer", The Journal of Physical Chemistry C, Vol. 125, No. 22, 2021, pp. 11867-11874, doi: https://doi.org/10.1021/acs.jpcc.1c03667.
  11. D. Zhu, Y. Yang, and T. Ma, "Evaluation the Resistance Growth of Aged Vehicular Proton Exchange Membrane Fuel Cell Stack by Distribution of Relaxation Times", Sustainability, Vol. 14, No. 9, 2022, pp. 5677, doi: https://doi.org/10.3390/su14095677.
  12. T. G. Bergmann and N. Schluter, "Introducing alternative algorithms for the determination of the distribution of relaxation times", ChemPhysChem, Vol. 23, No. 13, 2022, pp. e202200012, doi: https://doi.org/10.1002/cphc.202200012.
  13. M. Heinzmann, A. Weber, and E. Ivers-Tiffee, "Advanced impedance study of polymer electrolyte membrane single cells by means of distribution of relaxation times", Journal of Power Sources, Vol. 402, 2018, pp. 24-33, doi: https://doi.org/10.1016/j.jpowsour.2018.09.004.
  14. T. Reshetenko and A. Kulikovsky, "Understanding the distribution of relaxation times of a low-Pt PEM fuel cell", Electrochimica Acta, Vol. 391, 2021, pp. 138954, doi: https://doi.org/10.1016/j.electacta.2021.138954.
  15. A. Weiss, S. Schindler, S. Galbiati, M. A. Danzer, and R. Zeis, "Distribution of relaxation times analysis of high-temperature pem fuel cell impedance spectra", Electrochimica Acta, Vol. 230, 2017, pp. 391-398, doi: https://doi.org/10.1016/j.electacta.2017.02.011.
  16. J. Liu, C. Yang, C. Liu, F. Wang, and Y. Song, "Design of pore structure in gas diffusion layers for oxygen depolarized cathode and their effect on activity for oxygen reduction reaction", Industrial & Engineering Chemistry Research, Vol. 53, No. 14, 2014, pp. 5866-5872, doi: https://doi.org/10.1021/ie403975r.
  17. S. Salari, M. Tam, C. McCague, J. Stumper, and M. Bahrami, "The ex-situ and in-situ gas diffusivities of polymer electrolyte membrane fuel cell catalyst layer and contribution of primary pores, secondary pores, ionomer and water to the total oxygen diffusion resistance", Journal of Power Sources, Vol. 449, 2020, pp. 227479, doi: https://doi.org/10.1016/j.jpowsour.2019.227479.
  18. H. Chun, D. H. Kim, H. S. Jung, and C. Pak, "Determinatio n of optimum binder content in the catalyst layer with differ e-nt GDL for anode of HT-PEMFC", Journal of Hydrogen a nd New Energy, Vol. 33, No. 1, 2022, pp. 38-46, doi: https://doi.org/10.7316/KHNES.2022.33.1.38.
  19. Y. Yin, R. Li, F. Bai, W. Zhu, Y. Qin, Y. Chang, J. Zhang, and M. D. Guiver, "Ionomer migration within PEMFC catalyst layers induced by humidity changes", Electrochemistry Co -mmunications, Vol. 109, 2019, pp. 106590, doi: https://doi.org/10.1016/j.elecom.2019.106590.
  20. G. Wang, L. Osmieri, A. G. Star, J. Pfeilsticker, and K. C. Neyerlin, "Elucidating the role of ionomer in the performance of platinum group metal-free catalyst layer via in situ electrochemical diagnostics", Journal of The Electrochemical Society, Vol. 167, No. 4, 2020, pp. 044519, doi: https://doi.org/10.1149/1945-7111/ab7aa1.
  21. R. Jinnouchi, K. Kudo, K. Kodama, N. Kitano, T. Suzuki, S. Minami, K. Shinozaki, N. Hasegawa, and A. Shinohara, "The role of oxygen-permeable ionomer for polymer electrolyte fuel cells", Nature Communications, Vol. 12, 2021, pp. 4956, doi: https://doi.org/10.1038/s41467-021-25301-3.
  22. Y. H. Huang, Y. H. Hsu, and Y. T. Pan, "Fabrication of catalyst layers with preferred mass and charge transport properties through texture engineering", ACS Applied Energy Materials, Vol. 5, No. 3, 2022, pp. 2890-2897, doi: https://doi.org/10.1021/acsaem.1c03568.
  23. H. Sun, H. Chen, and Y. Wan, "Mass transfer in the HT-PEM fuel cell electrode", Energy Procedia, Vol. 61, 2014, pp. 1524-1527, doi: https://doi.org/10.1016/j.egypro.2014.12.161.
  24. M. R. Gerhardt, L. M. Pant, J. C. Bui, A. R. Crothers, V. M. Ehlinger, J. C. Fornaciari, J. Liu, and A. Z. Weber, "Method-practices and pitfalls in voltage breakdown analysis of electrochemical energy-conversion systems", Journal of the Electrochemical Society, Vol. 168, No. 7, 2021, pp. 074503, doi: https://doi.org/10.1149/1945-7111/abf061.
  25. J. Choi, J. Sim, H. Oh, and K. Min, "Resistance separation of polymer electrolyte membrane fuel cell by polarization curve and electrochemical impedance spectroscopy", Energies, Vol. 14, No. 5, 2021, pp. 1491, doi: https://doi.org/10.3390/en14051491.
  26. Z. Zhao, M. D. Hossain, C. Xu, Z. Lu, Y. S. Liu, S. H. Hsieh, I. Lee, W. Gao, J. Yang, B. V. Merinov, W. Xue, Z. Liu, J. Zhou, Z. Luo, X. Pan, F. Zaera, J. Guo, X. Duan, W. A. Goddard III, and Y. Huang, "Tailoring a three-phase microenvironment for high-performance oxygen reduction reaction in proton exchange membrane fuel cells", Matter, Vol. 3, No. 5, 2020, pp. 1774-1790, doi: https://doi.org/10.1016/j.matt.2020.09.025.
  27. H. Chun, D. H. Kim, H. S. Jung, J. Sim, and C. Pak, "Effects of gas-diffusion layer properties on the performance of the cathode for high-temperature polymer electrolyte membrane fuel cell", International Journal of Hydrogen Energy 2023 (epub ahead of print), doi: https://doi.org/10.1016/j.ijhydene.2023.03.416.