DOI QR코드

DOI QR Code

냉각 실린더의 수평 거리가 저장 용기 내부의 기체 수소 자연대류 현상에 미치는 영향

Effect of Horizontal Distance of Cold Cylinders on Natural Convection of Gaseous Hydrogen in a Physical Storage Container

  • 서영민 (한국전기연구원 수소전기연구팀) ;
  • 노현우 (한국전기연구원 수소전기연구팀) ;
  • 하동우 (한국전기연구원 수소전기연구팀) ;
  • 구태형 (한국전기연구원 수소전기연구팀) ;
  • 고락길 (한국전기연구원 수소전기연구팀)
  • YOUNG MIN SEO (Hydrogen Electric Research Team, Korea Electrotechnology Research Institute) ;
  • HYUN WOO NOH (Hydrogen Electric Research Team, Korea Electrotechnology Research Institute) ;
  • DONG WOO HA (Hydrogen Electric Research Team, Korea Electrotechnology Research Institute) ;
  • TAE HYUNG KOO (Hydrogen Electric Research Team, Korea Electrotechnology Research Institute) ;
  • ROCK KIL KO (Hydrogen Electric Research Team, Korea Electrotechnology Research Institute)
  • 투고 : 2023.06.07
  • 심사 : 2023.06.22
  • 발행 : 2023.06.30

초록

This study conducted direct numerical simulations of the natural convection phenomena of gaseous hydrogen in a physical storage container containing four circular cylinders. Rayleigh numbers (Ra) in the range of 104≤Ra≤106 and a Prandtl number (Pr)=0.69 (gaseous hydrogen) were considered. The main parameter is a horizontal distance of four circular cylinders and the values of εh=0.1, 0.2, 0.3, 0.4, and 0.5 are considered. The flow and thermal structures and corresponding heat transfer characteristics are investigated with respect to the transition of the flow regime. The time- and surface-averaged Nusselt number on the cylinder surface and the wall of physical storage container increased by about 57% and 69% according to the Ra and εh, respectively. Thus, the horizontal distance has an influence on the heat transfer characteristics on natural convection of gaseous hydrogen.

키워드

과제정보

이 연구는 2023년도 정부(과학기술정보통신부)의 재원으로 국가과학기술연구회의 지원을 받아 수행된 한국전기연구원 기본 사업임(No. 23A01043).

참고문헌

  1. N. Agrawal, S. M. Ali, K. Velusamy, and S. K. Das, "A correlation for heat transfer during laminar natural convection in an enclosure containing uniform mixture of air and hydrogen", International Communications in Heat and Mass Transfer, Vol. 39, No. 1, 2012, pp. 24-29, doi: https://doi.org/10.1016/j.icheatmasstransfer.2011.08.022. 
  2. M. Bouhalleb and H. Abbassi, "Natural convection of nanofluids in enclosures with low aspect ratios", International Journal of Hydrogen Energy, Vol. 39, No. 27, 2014, pp. 15275-15286, doi: https://doi.org/10.1016/j.ijhydene.2014.04.069. 
  3. Y. Horie, Y. Shirai, M. Shiotsu, T. Matsuzawa, K. Yoneda, H. Shigeta, H. Tatsumoto, K. Hata, Y. Naruo, H. Kobayashi, and Y. Inatani, "Film boiling heat transfer properties of liquid hydrogen in natural convection", Physics Procedia, Vol. 67, 20 15, pp. 643-648, doi: https://doi.org/10.1016/j.phpro.2015.06.109. 
  4. G. Wosiak, J. da Silva, S. S. Sena, E. B. Carneiro-Neto, M. C. Lopes, and E. Pereira, "Investigation of the influence of the void fraction on the energy consumption of a vertical electrolyser under natural convection", Journal of Environmental Chemical Engineering, Vol. 10, No. 3, 2022, pp. 107577, doi: https://doi.org/10.1016/j.jece.2022.107577. 
  5. X. S. Bai, W. W. Yang, W. Y. Zhang, F. S. Yang, and X. Y. Tang, "Hydrogen absorption performance of a novel cylindrical MH reactor with combined loop-type finned tube and cooling jacket heat exchanger", International Journal of Hydrogen Energy, Vol. 45, No. 52, 2020, pp. 28100-28115, doi: https://doi.org/10.1016/j.ijhydene.2020.04.209. 
  6. L. Zhao, Q. Zhao, J. Zhang, S. Zhang, G. He, M. Zhang, T. Su, X. Liang, C. Huang, and W. Yan, "Review on studies of the emptying process of compressed hydrogen tanks", International Journal of Hydrogen Energy, Vol. 46, No. 43, 2021, pp. 22554-22573, doi: https://doi.org/10.1016/j.ijhydene.2021.04.101. 
  7. G. H. R. Kefayati and H. Tang, "Double-diffusive natural convection and entropy generation of Carreau fluid in a heated enclosure with an inner circular cold cylinder (Part I: heat and mass transfer)", International Journal of Heat and Mass Transfer, Vol. 120, 2018, pp. 731-750, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.080. 
  8. G. H. R. Kefayati and H. Tang, "Double-diffusive laminar natural convection and entropy generation of Carreau fluid in a heated enclosure with an inner circular cold cylinder (Part II: entropy generation)", International Journal of Heat and Mass Transfer, Vol. 120, 2018, pp. 683-713, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.081. 
  9. G. H. R. Kefayati and H. Tang, "Lattice Boltzmann simulation of viscoplastic fluids on natural convection in an inclined enclosure with inner cold circular/elliptical cylinders (Part I: one cylinder)", International Journal of Heat and Mass Transfer, Vol. 123, 2018, pp. 1138-1162, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.139. 
  10. G. H. R. Kefayati and H. Tang, "MHD thermosolutal natural convection and entropy generation of Carreau fluid in a heated enclosure with two inner circular cold cylinders, using LBM", International Journal of Heat and Mass Transfer, Vol. 126, Pt. B, 2018, pp. 508-530, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.026. 
  11. E. Zemach, A. Spizzichino, and Y. Feldman, "Instability characteristics of a highly separated natural convection flow: configuration of a tandem of cold and hot horizontally oriented cylinders placed within a cold cubic enclosure", International Journal of Thermal Sciences, Vol. 159, 2021, pp. 106606, doi: https://doi.org/10.1016/j.ijthermalsci.2020.106606. 
  12. C. S. Dai, M. Li, H. Y. Lei, and S. X. Wang, "Numerical simulation of natural convection between hot and cold microtubes in a cylinder enclosure", International Journal of Thermal Sciences, Vol. 95, 2015, pp. 115-122, doi: https://doi.org/10.1016/j.ijthermalsci.2015.04.008. 
  13. Y. G. Park, H. S. Yoon, and M. Y. Ha, "Natural convection in square enclosure with hot and cold cylinders at different vertical locations", International Journal of Heat and Mass Transfer, Vol. 55, No. 25-26, 2012, pp. 7911-7925, doi:https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.012. 
  14. S. G. Kim, J. H. Shim, and Y. H. Im, "Numerical simulation of hydrogen storage system using magnesium hydride enhanced in its heat transfer", Journal of Hydrogen and New Energy, Vol. 26, No. 5, 2015, pp. 469-476, doi: https://doi.org/10.7316/KHNES.2015.26.5.469. 
  15. S. Sohn and W. Kim, "A study on anti-icing design by conjugate heat transfer analysis in a lab-scale printed circuit heat exchanger for supply of cryogenic high pressure liquid hydrogen", Journal of Hydrogen and New Energy, Vol. 33, No. 5, 2022, pp. 541-549, doi: https://doi.org/10.7316/KHNES.2022.33.5.541. 
  16. J. Lee, S. Kim, and Y. Sohn "An Experimental study on the natural convection heat transfer of air-cooling PEMFC in a enclosure", Journal of Hydrogen and New Energy, Vol. 27, No. 1, 2016, pp. 42-48, doi: https://doi.org/10.7316/KHNES.2016.27.1.042. 
  17. K. I. Lee, S. W. Lee, M. S. Park, and C. N. Chu, "The development of cylinder shaped air-breathing PEMFC", Journal of Hydrogen and New Energy, Vol. 20, No. 2, 2009, pp. 125-132. Retrieved from http://koreascience.or.kr/article/JAKO200918133144999.page. 
  18. M. D. de Tullio, P. de Palma, G. Iaccarino, G. Pascazio, and M. Napolitano, "An immersed boundary method for compressible flows using local grid refinement", Journal of Computational Physics, Vol. 225, No. 2, 2007, pp. 2098-2117, doi: https://doi.org/10.1016/j.jcp.2007.03.008. 
  19. M. C. Lai, Y. H. Tseng, and H. Huang, "An immersed boundary method for interfacial flows with insoluble surfactant", Journal of Computational Physics, Vol. 227, No. 15, 2008, pp. 7279-7293, doi: https://doi.org/10.1016/j.jcp.2008.04.014. 
  20. S. W. Su, M. C. Lai, and C. A. Lin, "An immersed boundary technique for simulating complex flows with rigid boundary", Computers & Fluids, Vol. 36, No. 2, 2007, pp. 313-324, doi: https://doi.org/10.1016/j.compfluid.2005.09.004. 
  21. R. O. Warrington Jr and G. Crupper Jr, "Natural convection heat transfer between cylindrical tube bundles and a cubical enclosure", ASME Journal of Heat and Mass Transfer, Vol. 103, No. 1, 1981, pp. 103-107, doi: https://doi.org/10.1115/1.3244401.