DOI QR코드

DOI QR Code

In-silico Studies of Boerhavia diffusa (Purnarnava) Phytoconstituents as ACE II Inhibitor: Strategies to Combat COVID-19 and Associated Diseases

  • Rahul Maurya (National Ayurveda Research Institute for Panchakarma, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH) ;
  • Thirupataiah Boini (National Ayurveda Research Institute for Panchakarma, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH) ;
  • Lakshminarayana Misro (National Ayurveda Research Institute for Panchakarma, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH) ;
  • Thulasi Radhakrishnan (National Ayurveda Research Institute for Panchakarma, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH)
  • Received : 2023.02.02
  • Accepted : 2023.06.15
  • Published : 2023.06.30

Abstract

COVID-19 caused a catastrophe in human health. People infected with COVID-19 also suffer from various clinical illnesses during and after the infection. The Boerhavia diffusa plant is well known for its antihypertensive activity. ACE-II inhibitors and calcium channel blockers are reported as mechanisms for the antihypertensive activity of B. diffusa phytoconstituents. Various studies have said ACE-II is the virus's binding site to attack host cells. COVID-19 treatment commonly employs a variety of synthetic antiviral and steroidal drugs. As a result, other clinical illnesses, such as hypertension and hyperglycemia, emerge as serious complications. Safe and effective drug delivery is a prime objective of the drug development process. COVID-19 is treated with various herbal treatments; however, they are not widely used due to their low potency. Many herbal plants and formulations are used to treat COVID-19 infection, in which B. diffusa is the most widely used plant. The current study relies on discovering active phytoconstituents with ACE-II inhibitory activity in the B. diffusa plant. As a result, it can be used as a treatment option for patients with COVID-19 and related diseases. Different phytoconstituents of the B. diffusa plant were selected from the reported literature. The activity of phytoconstituents against ACE-II proteins has been studied. Molecular docking and ligand-protein interaction computation tools are used in the in-silico experiment. Physicochemical, drug-likeness, water solubility, lipophilicity, and pharmacokinetic parameters are used to evaluate phytoconstituents. Liriodenine has the best drug-likeness, bioactivity, and binding score characteristics among the selected ligands. The in-silico study aims to find the therapeutic potential of B. diffusa phytoconstituents against ACE-II. Targeting ACE-II also shows an effect against SARS-CoV-2. It can serve as a rationale for designing a drug for patient infected with COVID-19 and associated diseases.

Keywords

Acknowledgement

This work was supported by a grant (3-66/2021-CCRAS/Admn/IMR/1631) from the Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India. The authors also thankful to DG, CCRAS and Director, National Ayurveda Research Institute for Panchakarma, Thrissur, India for providing continuous support and encouragement.

References

  1. Porter, J.; Blau, E.; Gharagozloo, F.; Martino, M.; Cerfolio, R.; Duvvuri, U.; Caceres, A.; Badani, K.; Bhayani, S.; Collins, J.; Coelho, R.; Rocco, B.; Wiklund, P.; Nathan, S.; Parra-Davila, E.; Ortiz-Ortiz, C.; Maes, K.; Dasgupta, P.; Patel, V. BJU Int. 2020, 126, 225-234. https://doi.org/10.1111/bju.15105
  2. Hashemi, S. M. A.; Thijssen, M.; Hosseini, S. Y.; Tabarraei, A.; Pourkarim, M. R.; Sarvari, J. Arch. Virol. 2021, 166, 2089-2108. https://doi.org/10.1007/s00705-021-05070-6
  3. Jackson, C. B.; Farzan, M.; Chen, B.; Choe, H. Nat. Rev. Mol. Cell Bio. 2022, 23, 3-20. https://doi.org/10.1038/s41580-021-00418-x
  4. Gu, W.; Gan, H.; Ma, Y.; Xu, L.; Cheng, Z. J.; Li, B.; Zhang, X.; Jiang, W.; Sun, J.; Sun, B.; Hao, C. Virol. J. 2022, 19, 49.
  5. Singh, H.; Choudhari, R.; Nema, V.; Khan, A. A. Microb. Pathog. 2021, 150, 104621.
  6. Bhushan, S.; Xiao, Z.; Gao, K.; Mao, L.; Chen, J.; Ping, W.; Hong, W.; Zhang, Z. Curr. Probl. Cardiol. 2022, 48, 101162.
  7. Cheng, H.; Wang, Y.; Wang, G. Q. J. Med. Virol. 2020, 92, 726-730. https://doi.org/10.1002/jmv.25785
  8. Bhowmick, N. A.; Oft, J.; Dorff, T.; Pal, S.; Agarwal, N.; Figlin, R. A.; Posadas, E. M.; Freedland, S.; Gong, J. Endocr. Relat. Cancer 2020, 27, R281-R292. https://doi.org/10.1530/ERC-20-0165
  9. Zaki, N.; Alashwal, H.; Ibrahim, S. Diabetes Metab. Syndr. 2020, 14, 1133-1142.
  10. Peckham, H.; de Gruijter, N. M.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L. R.; Rosser, E. C.; Webb, K.; Deakin, C. T. Nat. Commun. 2020, 11, 6317.
  11. Nugraha, R. V.; Ridwansyah, H.; Ghozali, M.; Khairani, A. F.; Atik, N. Evid. Based Complement. Alternat. Med. 2020, 2020, 2560645.
  12. Creagh, S.; Warden, D.; Latif, M. A.; Paydar, A. Clin. Radiol. Imaging. J. 2018, 2, 000116.
  13. Huang, Z.; Chavda, V. P.; Vora, L. K.; Gajjar, N.; Apostolopoulos, V.; Shah, N.; Chen, Z. S. Front. Pharmacol. 2022, 13, 899633.
  14. Gaur, P. K.; Rastogi, S.; Lata, K. Phytomed. Plus 2022, 2, 100260.
  15. Maurya, R.; Boini, T.; Misro, L.; Thulasi, R.; Singh, R. Curr. Hypertens. Rev. 2023, 19, 1-17.
  16. Gong, J.; Xue, L.; Wei, M.; Han, W.; Jing, S. Arch. Med. Sci. 2021, in press.
  17. Yang, L.; Li, D.; Zhuo, Y.; Zhang, S.; Wang, X.; Gao, H. Inflammation 2016, 39, 1805-1813. https://doi.org/10.1007/s10753-016-0416-1
  18. Chen, Y.; Peng, L.; Shi, S.; Guo, G.; Wen, H. J. Cell. Mol. Med. 2021, 25, 6403-6416. https://doi.org/10.1111/jcmm.16620
  19. Kumar, J. R.; Varadaraju, K. R. Eur. J. Mol. Clin. Med.2021, 8, 2207-2216.
  20. Rutwick Surya, U.; Praveen, N. Virusdisease. 2021, 32, 46-54. https://doi.org/10.1007/s13337-021-00683-6
  21. Vivek-Ananth, R. P.; Mohanraj, K.; Sahoo, A. K.; Samal, A. bioRxiv 2022, 496609.
  22. Daina, A.; Michielin, O.; Zoete, V. Sci. Rep. 2017, 7, 42717.
  23. Towler, P.; Staker, B.; Prasad, S. G.; Menon, S.; Tang, J.; Parsons, T.; Ryan, D.; Fisher, M.; Williams, D.; Dales, N. A.; Patane, M. A.; Pantoliano, M. W. J. Biol. Chem. 2004, 279, 17996-18007. https://doi.org/10.1074/jbc.M311191200
  24. Upreti, S.; Prusty, J. S.; Pandey, S. C.; Kumar, A.; Samant, M. Mol. Divers. 2021, 25, 1795-1809. https://doi.org/10.1007/s11030-020-10159-2
  25. Lawal, B.; Liu, Y. L.; Mokgautsi, N.; Khedkar, H.; Sumitra, M. R.; Wu, A. T. H.; Huang, H. S. Biomedicines 2021, 9, 92.
  26. Andrews, C. W.; Bennett, L.; Yu, L. X. Pharm. Res. 2000, 17, 639-644. https://doi.org/10.1023/A:1007556711109
  27. Wicik, Z.; Eyileten, C.; Jakubik, D.; Simoes, S. N.; Martins Jr, D. C.; Pavao, R.; Siller-Matula, J. M.; Postula, M. J. Clin. Med. 2020, 9, 3743.
  28. Luo, J.; Lu, S.; Yu, M.; Zhu, L.; Zhu, C.; Li, C.; Fang, J.; Zhu, X.; Wang, X. Gene 2021, 768, 145325.
  29. Rezaei, M.; Ziai, S. A.; Fakhri, S.; Pouriran, R. J. Cell. Physiol. 2021, 236, 2430-2442. https://doi.org/10.1002/jcp.30041