DOI QR코드

DOI QR Code

마르코프 연쇄 모델을 이용한 하수관로의 구조적 노후도 추정

Estimation of Structural Deterioration of Sewer using Markov Chain Model

  • 강병준 ((주)엔솔파트너스 스마트상하수도사업팀) ;
  • 유순유 (한국공학대학교) ;
  • 장전리 (중앙대학교 토목공학과) ;
  • 박규홍 (중앙대학교 사회기반시스템공학부)
  • 투고 : 2020.07.06
  • 심사 : 2023.05.17
  • 발행 : 2023.08.01

초록

하수관로 열화모델은 하수관망을 관리하는 의사결정자에게 자산의 미래 상태 예측에 대한 중요한 정보를 제공할 수 있다. 본 연구에서는 CCTV 조사를 통해서 확보한 구조적 상태평가 이력자료를 기반으로 마르코프 연쇄 모델을 이용하여 하수관로의 노후도를 추정하였다. A시의 3개 배수분구에서 1998-1999년과 2010-2011년에 CCTV 조사에 의해 수집된 관경 450 mm와 600 mm의 흄관 자료를 이용하여 분석하였다. EM 배수분구의 450 mm 관로와 600 mm 관로에서 주요 결함 발생이 다른 두 배수분구보다 빠르게 발생하는 것으로 나타났다. 관로 설치 이후 35년이 지난 시점에는 450 mm 관로의 약 29%, 600 mm 관로의 약 38%가 주요 결함이 발생했으며, 100년 후에는 각각 62%와 74%의 관로가 주요 결함으로 관로 기능을 상실하는 수준으로 나타났다. 관로설치 35년 후, SN 배수분구는 450 mm 관로의 약 26%, 600 mm 관로에서 약 35%, HK 배수분구에서는 450 mm 관로의 약 27%, 600 mm 관로에서 약 37%의 주요 결함이 발생한 것으로 예측되었다. 또한 600 mm 관로가 450 mm 관로보다 평균 12년 정도 빨리 기능 저하가 일어나는 것으로 나타났다. 한편, 관로의 주요 결함등급 비율을 40%로 설정하여 관로의 유효사용수명으로 적용할 경우, 450 mm 관로는 SN배수분구에서 60년, EM배수분구에서 42년, HK배수분구 59년이며, 600 mm 관로에서는 각각 43년, 34년 39년으로 나타났다.

Sewer deterioration models can offer important information on prediction of future condition of the asset to decision makers in their implementing sewer pipe networks management program. In this study, Markov chain model was used to estimate sewer deterioration trend based on the historical structural condition assessment data obtained by CCTV inspection. The data used in this study were limited to Hume pipe with diameter of 450 mm and 600 mm in three sub-catchment areas in city A, which were collected by CCTV inspection projects performed in 1998-1999 and 2010-2011. As a result, it was found that sewers in sub-catchment area EM have deteriorated faster than those in other two sub-catchments. Various main defects were to generate in 29% of 450 mm sewers and 38% of 600 mm in 35 years after the installation, while serious failure in 62% of 450 mm sewers and 74% of 600 mm in 100 years after the installation in sub-catchment area EM. In sub-catchment area SN, main defects were to generate in 26% of 450 mm sewers and 35% of 600 mm in 35 years after the installation, while in sub-catchment area HK main defects were to generate in 27% of 450 mm sewers and 37% of 600 mm in 35 years after the installation. Larger sewer pipes of 600 mm were found to deteriorate faster than smaller sewer pipes of 450 mm by about 12 years. Assuming that the percentage of main defects generation could be set as 40% to estimate the life expectancy of the sewers, it was estimated as 60 years in sub-catchment area SN, 42 years in sub-catchment area EM, 59 years in sub-catchment area HK for 450 mm sewer pipes, respectively. For 600 mm sewer pipes, on the other hand, it was estimated as 43 years, 34 years, 39 years in sub-catchment areas SN, EM, and HK, respectively.

키워드

과제정보

이 논문은 2017년도 정부(과학기술정보통신부)의 재원으로 한국연구재단-과학기술인문사회 융합연구사업의 지원을 받아 수행 된 연구임(NRF-2017M3C1B6070095).

참고문헌

  1. American Concrete Pipe Association (ACPA) (1991). Buried Facts: Bibliography Pipe Material Durability, (Accessed: March 10, 2004).
  2. Ariaratnam, S. T. (1994). The investigation of methods to assist decision-makers regarding bridge maintenance, repair and restoration activities, Ph.D. Dissertation, University of Illinois, Urbana-Champaign, Illinois.
  3. Ariaratnam, S. T., El-Assaly, A. and Yang, Y. (2001). "Assessment of infrastructure inspection needs using logistic models." Journal of Infrastructure Systems, ASCE, Vol. 7, No. 4, pp. 160-165, https://doi.org/10.1061/(ASCE)1076-0342(2001)7:4(160).
  4. Baik, H. S., Jeong, H. S. and Abraham, D. M. (2006). "Estimating transition probabilities in markov chain-based deterioration models for management of wastewater systems." Journal of Water Resources Planning and Management, ASCE, Vol. 132, No. 1, pp. 15-24, https://doi.org/10.1061/(ASCE)0733-9496(2006)132:1(15).
  5. Baur, R. and Herz, R. (2002). "Selective inspection planning with ageing forecast for sewer types." Water Science and Technology, IWA, Vol. 46, Nos. 6-7, pp. 389-396, https://doi.org/10.2166/wst.2002.0704.
  6. Chae, M. J., Iseley, T. and Abraham, D. M. (2003). "Computerized sewer pipe condition assessment." Proceedings of Pipeline Engineering and Construction International Conference, Baltimore, USA, https://doi.org/10.1061/40690(2003)12.
  7. City of Victoria (2005). Water & Environment Water Works Operations (Accessed: March 21, 2005).
  8. Dirksen, J., Goldina, A., ten Veldhuis, J. A. E. and Clemens, F. H. L. R. (2007). "The role of uncertainty in urban drainage decisions: Uncertainty in inspection data and their impact on rehabilitation decisions." Proceedings of IWA 2nd Leading-Edge Conference in Asset Management, Lisbon, Portugal, pp. 273-285.
  9. Herz, R. K. (1998). "Exploring rehabilitation needs for drinking water distribution networks." Journal of Water Supply: Research and Technology-Aqua, IWA, Vol. 47, No. 6, pp. 275-283, https://doi.org/10.2166/aqua.1998.33.
  10. International Infrastructure Management Manual(IIMM) (2000). New Zealand National Asset Management Steering Group and the Institute of Public Works Engineering of Australia.
  11. Le Gat, Y. (2008). "Modelling the deterioration process of drainage pipelines." Urban Water, Taylor & Francis, Vol. 5, No. 2, pp. 97-106, https://doi.org/10.1080/15730620801939398.
  12. Lemer, A. (1999). "Building public works infrastructure management systems for achieving high returns on public assets." Public Works Management & Policy, SAGE, Vol. 3, No. 3, pp. 255-272, https://doi.org/10.1177/1087724X9933007.
  13. Mehle, J. J., O'Keefe, S. M. and Wrase, P. E. (2001). An examination of methods for condition rating of sewer pipelines, Center for Development of Technical Leadership, University of Minnesota.
  14. Micevski, T., Kuczera, G., and Coombes, P. (2002). "Markov model for storm water pipe deterioration." Journal of Infrastructure Systems, Vol. 82, No. 2, pp. 49-56, https://doi.org/10.1061/(ASCE)1076-0342(2002)8:2(49).
  15. Muller, K. and Fischer, B. (2007). "Objective condition assessment of sewer systems." Proceedings of IWA 2nd Leading-Edge Conference in Asset Management, Lisbon, Portugal.
  16. NASSCO (2004). National Association for Sewer Service Companies (Accessed: October 15, 2004).
  17. National Clay Pipe Institute(NCPI) (2004). Tech Notes: Vitrified Clay and Polyvinyl Chloride Pipe, (Accessed: October 15, 2004).
  18. Osaki, S. (1992). Applied stochastic system modeling, Springer Science & Business Media.
  19. Rostum, J., Baur, R., Saegrov, S., Horold, S. and Schilling, W. (1999). "Predictive service-life models for urban water infrastructure management." Proceedings of 8th International Conference on Urban Storm Drainage, Sydney, Australia, Vol. 2, pp. 594-601.
  20. Ryeo, M. K., Kin, S. K., Kim, J. H. and Kim, J. H. (2004). "A stochastic optimization model for sewer rehabilitation policy : considering uncertainty in inflow/infiltration flow." KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 24, No. 3B, pp. 267-272 (in Korean).
  21. Seoul (2013a). A Study on Performance Analysis and Quality Improvement for Comprehensive maintenance business of Sewer Pipes (in Korean).
  22. Seoul (2013b). Seoul Sewerage Management System Database (in Korean).
  23. United States Army Corps of Engineers(USACE) (1984). Sanitary and Industrial Wastewater Collection Engineering and Design Manual, EM-1110-3-174, U.S. Army Corps of Engineers (Accessed: March 21, 2005).
  24. Vanier, D. J. (2001). "Why industry needs asset management tools." Journal of Computing in Civil Engineering, ASCE, Vol. 15, No. 1, pp. 35-43, https://doi.org/10.1061/(ASCE)0887-3801(2001)15:1(35).
  25. Water Research Centre(WRc) (1994). Sewerage Rehabilitation Manual, 3rd Edition, Water Research Center Plc, Wiltshire, U.K.
  26. Wirahadikusumah, R., Abraham, D. and Iseley, T. (2001). "Challenging issues in modeling deterioration of combined sewers." Journal of Infrastructure Systems, ASCE, Vol. 7, No. 2, pp. 77-84, https://doi.org/10.1061/(ASCE)1076-0342(2001)7:2(77).
  27. Yoon, S. S. (2014). Sewer piepe maintenance association (in Korean).