DOI QR코드

DOI QR Code

초탄성 형상기억합금을 적용한 선행압축 폴리우레탄 댐퍼의 거동 특성 검증

Verification of Behavior Characteristics of Precompression Polyurethane Damper Using Superelastic Shape Memory Alloy

  • 김영찬 (인천대학교 산학협력단, 인천방재연구센터) ;
  • 허종완 (인천대학교 건설환경공학부, 인천방재연구센터)
  • 투고 : 2023.02.27
  • 심사 : 2023.03.16
  • 발행 : 2023.08.01

초록

지진피해 감소를 위한 내진 구조 중에서 제진 구조는 댐퍼의 간단한 적용으로 효율적으로 내진 성능을 향상시키고 경제성을 확보할 수 있는 기술이다. 그러나 기존의 댐퍼는 요구 내진 성능과 재료 소성으로 인한 내구성에 대하여 한계를 나타낸다. 따라서 본 연구에서는 기본적으로 탄성 특성을 나타내는 폴리우레탄에 선행 압축을 가하고 초탄성 형상기억합금을 적용하여 복원 특성을 증진시킨 폴리우레탄 댐퍼를 제안하였다. 폴리우레탄 댐퍼의 특성을 검증하기 위하여 우선 개념을 정립하고 초탄성 형상기억합금과 강재 적용, 선행압축 크기를 설계 변수로 선정하여 설계 상세를 완성하였다. 또한, 구조 실험을 수행하여 응답 거동을 도출하여 하중 저항 성능, 잔류 변위, 회복률, 에너지 소산 능력을 분석하였다. 분석한 결과 폴리우레탄 댐퍼는 초탄성 형상기억합금 와이어를 적용하고 선행 압축이 증가하면 다양한 성능이 향상되는 결과를 나타냈다.

Among the seismic structures for reducing earthquake damage, the seismic control structure is a technology that can efficiently improve seismic performance and secure economic feasibility by simply applying a damper. However, existing dampers have limitations in terms of durability due to required seismic performance and material plasticity. In this study, we proposed a polyurethane damper with enhanced recovery characteristics by applying precompression to polyurethane, which basically shows elastic characteristics, and applying superelastic shape memory alloy (SSMA). To verify the characteristics of the polyurethane damper, the concept was first established, and the design details were completed by selecting SSMA and steel, and selecting the precompression size as design variables. In addition, structural tests were conducted to derive response behavior and analyze force resistance performance, residual displacement, recovery rate, and energy dissipation capacity. As a result of the analysis, the polyurethane damper showed that various performances improved when the SSMA wire was applied and the precompression increased.

키워드

과제정보

본 연구는 한국연구재단 중견후속연구 사업(2021R1A2B5B0200259911)의 지원에 의해 수행되었습니다. 본 연구 지원에 깊은 감사를 드립니다.

참고문헌

  1. ATC-24. (1992). Guidelines for cyclic seismic testing of components of steel structures for buildings, Report No. ATC-24, Applied Technology Council, Redwood City, CA.
  2. Ban, W. H., Hu, J. W. and Ju, Y. H. (2020). "Seismic performance evaluation of recentering braced frame structures using superelastic shape memory alloys-nonlinear dynamic analysis." KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 40, No. 4, pp. 353-362, https://doi.org/10.12652/Ksce.2020.40.4.0353 (in Korean).
  3. Cho, H. M. and Hu, J. W. (2021). "Seismic performance evaluation for piloti structures of MPS seismic isolation device in response to earthquakes on the Richter Scale 7.0 - nonlinear dynamic analysis." KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 41, No. 1, pp. 13-20, https://doi.org/10.12652/Ksce.2021.41.1.0013 (in Korean).
  4. Choi, E. S., Park, S. J. and Woo, D. S. (2017). "Estimation of compressive stiffness of polyurethane rubber springs and its application." Journal of Korean Society of Steel Construction, KSSC, Vol. 29, No. 3, pp. 229-236, https://doi.org/10.7781/kjoss.2017.29.3.229 (in Korean).
  5. Hu, J. W. (2015). "Seismic behavior and estimation for base isolator bearings with self-centering and reinforcing systems." KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 35, No. 5, pp. 1025-1037, https://doi.org/10.12652/Ksce.2015.35.5.1025 (in Korean).
  6. Ju, Y. H. and Hu, J. W. (2021). "Experimental study on the behavior of polyurethane springs for compression members." Applied Science, MDPI, Vol. 11, No. 21, 10223, https://doi.org/10.3390/app112110223.
  7. Mirzai, N. M., Attarnejad, R. and Hu, J. W. (2021). "Experimental investigation of smart shear dampers with re-centering and friction devices." Journal of Building Engineering, Elsevier, Vol. 35, 102018, https://doi.org/10.1016/j.jobe.2020.102018.
  8. Qiu, C., Wang, H., Liu, J., Qi, J. and Wang, Y. (2020). "Experimental tests and finite element simulations of a new SMA-steel damper." Journal of Smart Materials and Structures, IOP, Vol. 29, No. 3, https://doi.org/10.1088/1361-665X/ab6abd.
  9. Reggio, A. and Angelis, M. D. (2015). "Optimal energy-based seismic design of non-conventional Tuned Mass Damper (TMD) implemented via inter-story isolation." Journal of Earthquake Engineering and Structural Dynamics, Wiley, Vol. 44, No. 10, pp. 1623-1642, https://doi.org/10.1002/eqe.2548.
  10. Wang, W., Fang, C., Zhang, A. and Liu, X. (2019). "Manufacturing and performance of a novel self-centring damper with shape memory alloy ring springs for seismic resilience." Journal of Structure Control and Health Monitoring, Wiley, Vol. 26, No. 5, e2337, https://doi.org/10.1002/stc.2337.
  11. Yuan, Y., Wei, W. and Ni, Z. (2021). "Analytical and experimental studies on an innovative steel damper reinforced polyurethane bearing for seismic isolation applications." Journal of Engineering Structures, Elsevier, Vol. 239, 112254, https://doi.org/10.1016/j.engstruct.2021.112254.