DOI QR코드

DOI QR Code

고성능 리튬-황 전지를 위한 금속산화물을 첨가한 탄소나노튜브 프리스탠딩 전극

Metal Oxides Decorated Carbon Nanotube Freestanding Electrodes for High Performance of Lithium-sulfur Batteries

  • Yun Jung Shin (Department of Chemical Engineering, Chungbuk National University) ;
  • Hyeon Seo Jeong (Department of Chemical Engineering, Chungbuk National University) ;
  • Eun Mi Kim (Department of Chemical Engineering, Chungbuk National University) ;
  • Tae Yun Kim (SNPLab Co. Ltd.) ;
  • Sang Mun Jeong (Department of Chemical Engineering, Chungbuk National University)
  • 투고 : 2023.06.19
  • 심사 : 2023.07.15
  • 발행 : 2023.08.01

초록

차세대 전지로 주목받는 리튬-황 전지는 높은 에너지 밀도를 갖는 반면, 황의 절연 특성, 셔틀 현상 그리고 부피팽창으로 인하여 상용화에 어려움이 있다. 본 연구에서는 경제적이고 간단한 진공여과 방법으로 바인더와 집전체가 없는 프리스탠딩 전극을 제조하였고 탄소나노튜브(CNT)를 황의 전기전도도 향상을 위하여 사용하였다. 여기서 CNT는 집전체와 도전재 역할을 동시에 수행하였다. 추가로 리튬폴리설파이드의 흡착에 용이한 금속산화물(MOx, M=Ni, Mg)을 CNT/S 전극에 첨가함으로써 리튬-황 전지의 셔틀반응을 억제하였다. MOx@CNT/S 전극은 금속산화물을 도입하지 않은 CNT/S 전극에 비해 높은 용량 특성과 사이클 안정성을 나타내었으며, 이는 금속산화물의 우수한 리튬폴리설파이드 흡착 특성으로 인하여 황 활물질의 손실을 억제한 결과이다. MOx@CNT/S 전극 중에서 NiO를 도입한 NiO@CNT/S 전극은 1 C에서 780 mAh g-1의 높은 방전용량을 나타내었고 200 사이클 후 134 mAh g-1으로 극심한 용량 감소가 나타났다. MgO@CNT/S 전극은 비록 초기 사이클에 544 mAh g-1의 낮은 방전용량을 나타냈지만, 200 사이클까지 용량을 90% 유지하는 우수한 사이클 안정성을 나타내었다. 고용량과 사이클 안정성 확보를 위하여 Ni:Mg를 0.7:0.3의 비율로 혼합한 Ni0.7Mg0.3O@CNT/S 전극은 755 mAh g-1 (1 C)의 초기 방전용량과 200 사이클 후에도 90% 이상의 용량 유지율을 나타내었다. 따라서 이원 금속산화물의 CNT/S 프리스탠딩으로의 적용은 고용량 특성뿐만 아니라 가장 큰 문제인 리튬폴리설파이드의 용출을 효과적으로 개선하여 경제적이고 고성능 리튬-황 전지의 개발이 가능함을 시사한다.

Lithium-sulfur batteries, recently attracting attention as next-generation batteries, have high energy density but are limited in application due to sulfur's insulating properties, shuttle phenomenon, and volume expansion. This study used an economical and simple vacuum filtration method to prepare a freestanding electrode without a binder and collector. Carbon nanotubes (CNTs) are used to improve the electrical conductivity of sulfur, where CNT also acts as both collector and conductor. In addition, metal oxides (MOx, M=Ni, Mg), which are easy to adsorb lithium polysulfide, are added to the CNT/S electrode to suppress the shuttle reaction in lithium-sulfur batteries, which is a result of suppressing the loss of active sulfur material due to the excellent adsorption of lithium polysulfide by metal oxides. The MOx@CNT/S electrode exhibited higher capacity characteristics and cycle stability than the CNT/S electrode without metal oxides. Among the MOx@CNT/S electrodes, the NiO@CNT/S electrode displayed a high discharge capacity of 780 mAh g-1 at 1 C and an extreme capacity decrease to 134 mAh g-1 after 200 cycles. Although the MgO@CNT/S electrode exhibited a low discharge rate of 544 mAh g-1 in the initial cycle, it showed good cycle stability with 90% of capacity retention up to 200 cycles. Further, to achieve high capacity and cycle stability, the Ni0.7Mg0.3O@CNT/S electrode, mixed with Ni:Mg in the ratio of 0.7:0.3, manifested an initial discharge rate of 755 mAh g-1 (1 C) and a capacity retention rate of more than 90% after 200 cycles. Therefore, applying binary metal oxides to CNT/S provides a freestanding electrode for developing economical and high-performance Li-S batteries, effectively improving lithium polysulfide's high capacity characteristics and dissolution.

키워드

과제정보

본연구는 2022년도정부(산업통상자원부, 과학기술정보통신부)의 재원으로 한국에너지기술평가원(KETEP) (No. 20224000000070), 연구개발특구진흥재단-기술이전사업화 사업(R&BD) (2022-IT-RD-0106)의 지원을 받아 수행된 연구임.

참고문헌

  1. Chen, J. S., Wang, X. L., Jin, E. M., Moon, S. G. and Jeong, S. M., "Optimization of B2O3 Coating Process for NCA Cathodes to Achieve Long-Term Stability for Application in Lithium-Ion Batteries," Energy, 222, 119913(2021).
  2. Lim, W. G., Jo, C., Lee, J. and Hwang, D. S., "Simple Modification with Amine- and Hydroxyl- Group Rich Biopolymer on Ordered Mesoporous Carbon/Sulfur Composite for Lithium-Sulfur Batteries," Korean J. Chem. Eng., 35(2), 579-586(2017). https://doi.org/10.1007/s11814-017-0302-z
  3. Choi, J. H., Choi, S. H., Cho, J. S., Kim, H. K. and Jeong, S. M., "Efficient Synthesis of High Areal Capacity Si@graphite@SiC Composite Anode Material via One-step Electro-deoxidation," J. Alloys Compd., 896, 163010(2022).
  4. Nam, K. C., Seon, Y. H., Bandyopadhyay, P., Cho, J. S. and Jeong, S. M., "Porous Nanofibers Comprising Hollow Co3O4/Fe3O4 Nanospheres and Nitrogen-doped Carbon Derived by Fe@ZIF-67 as Anode Materials for Lithium-ion Batteries," Int. J. Energy Res., 46(7), 8934-8948(2022). https://doi.org/10.1002/er.7770
  5. Sung, J. H., Kim, T. W., Kang, H. K., Choi, S. Y., Hasan, F., Mohanty, S. K., Kim, J., Srinivasa, M. K., Shin, H. C. and Yoo, H. D., "Superior High Voltage LiNi0.6Co0.2Mn0.2O2 Cathode Using Li3PO4 Coating for Lithium-Ion Batteries," Korean J. Chem. Eng., 38(5), 1059-1065(2021). https://doi.org/10.1007/s11814-021-0766-8
  6. Chen, J. S., Wang, X. L., Jin, E. M. and Jeong, S. M., "Synthesis of Carbon-Coated FeOx Nanoparticles Via Spray Solidification as Anode Materials for High-Performance Lithium-Ion Batteries," Appl. Surf. Sci., 611, 155647(2023).
  7. Jin, E. M., Lee, G. E., Na, B. K. and Jeong, S. M., "Electrochemical Properties of Commercial NCA Cathode Materials for High Capacity of Lithium-Ion Battery," Korean Chem. Eng. Res., 55(2), 163-169(2017).
  8. Son, D. H., Lim, W. G. and Lee, J. W., "A Short Review of the Recent Developments in Functional Separators for Lithium-sulfur Batteries," Korean J. Chem. Eng., 40, 473(2023).
  9. Saroha, R., Ahn, J. H. and Cho, J. S., "A Short Review on Dissolved Lithium Polysulfide Catholytes for Advanced Lithium-Sulfur Batteries," Korean J. Chem. Eng., 38(3), 461-474(2021). https://doi.org/10.1007/s11814-020-0729-5
  10. Shin, Y. J., Lee, W. Y., Kim, T. Y., Moon, S. G., Jin, E. M. and Jeong, S. M., "Preparation and Electrochemical Properties of Freestanding Flexible S/CNT/NiO Electrodes for Li-S Batteries," Korean Chem. Eng. Res., 60(2), 184-192(2022).
  11. Wang, X. L., Chen, J., Jin, B., Jiang, Q., Jin, E. M. and Jeong, S. M., "Electrochemical Performance of Electrospun Lotus-Root-Structure Porous Multichannel Carbon Nanotubes for Lithium-Sulfur Battery Applications," J. Electroanal. Chem., 878, 114564 (2020).
  12. Zhu, M., Tang, J., Wei, W. and Li, S., "Recent Progress in the Syntheses and Applications of Multishelled Hollow Nanostructures," Mater. Chem. Front., 4(4), 1105-1149(2020). https://doi.org/10.1039/C9QM00700H
  13. Lee J. S., Yang J. H. and Cho, J. S., "Nanofibers Comprising Mo2C/Mo2N Nanoparticles and Reduced Graphene Oxide as Functional Interlayers for Lithium-Sulfur Batteries," Korean Chem. Eng. Res., 60(4), 574-581(2022).
  14. Zhang, Z., Li, Q., Zhang, K., Chen, W., Lai, Y. and Li, J., "Titanium-Dioxide-Grafted Carbon Paper with Immobilized Sulfur as a Flexible Free-Standing Cathode for Superior Lithium-Sulfur Batteries," J. Power Sources, 290, 159-167(2015). https://doi.org/10.1016/j.jpowsour.2015.05.010
  15. Wang, Z. Y., Han, D. D., Liu, S., Li, G. R., Yan, T. Y. and Gao, X. P., "Conductive RuO2 Stacking Microspheres as an Effective Sulfur Immobilizer for Lithium-Sulfur Battery," Electrochim.. Acta., 337, 135772(2020).
  16. Yang, C., Li, P., Yu, J., Zhao, L. D. and Kong, L., "Approaching Energy-Dense and Cost-Effective Lithium-Sulfur Batteries: From Materials Chemistry and Price Considerations," Energy, 201, 117718(2020).
  17. Jo, M. and Cho, J., "Application of Hierarchically Porous Fe2O3 Nanofibers for Anode Materials of Lithium-ion Batteries," Korean Chem. Eng. Res., 57(2), 267-273(2019).
  18. Bandyopadhyay, S. and Nandan, B., "A Review on Design of Cathode, Anode and Solid Electrolyte for True All-solid-state Lithium Sulfur Batteries," Mater. Today Energy, 31, 101201(2023).
  19. Lee, W. Y., Jin, E. M., Cho, J. S., Kang, D. W., Jin, B. and Jeong, S. M., "Freestanding Flexible Multilayered Sulfur-Carbon Nanotubes for Lithium-Sulfur Battery Cathodes," Energy, 212, 118779(2020).
  20. Jin, K., Zhou, X., Zhang, L., Xin, X., Wang, G., and Liu, Z., "Sulfur/Carbon Nanotube Composite Film as a Flexible Cathode for Lithium-Sulfur Batteries," J. Phys. Chem. C., 117(41), 21112-21119(2013). https://doi.org/10.1021/jp406757w
  21. Fan, L., Zhuang, H. L., Zhang, K., Cooper, V. R., Li, Q. and Lu, Y., "Chloride-Reinforced Carbon Nanofiber Host as Effective Polysulfide Traps in Lithium-Sulfur Batteries," Adv. Sci., 3(12), 1600175(2016).
  22. Xia, Y., Fang, R., Xiao, Z., Huang, H., Gan, Y., Yan, R., Lu, X., Liang, C., Zhang, J., Tao, X. and Zhang, W., "Confining Sulfur in N-Doped Porous Carbon Microspheres Derived from Microalgaes for Advanced Lithium-Sulfur Batteries," ACS Appl. Mater. Interfaces, 9(28), 23782-23791(2017). https://doi.org/10.1021/acsami.7b05798
  23. Li, C., Sui, X. L., Wang, Z. B., Wang, Q. and Gu, D. M., "3D N-Doped Graphene Nanomesh Foam for Long Cycle Life LithiumSulfur Battery," Chem. Eng. J., 326, 265-272(2017). https://doi.org/10.1016/j.cej.2017.05.154
  24. Wang, H., Yang, Y., Liang, Y., Robinson, J. T., Li, Y., Jackson, A., Cui, Y. and Dai, H., "Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium-Sulfur Battery Cathode Material with High Capacity and Cycling Stability," Nano Lett., 11(7), 2644-2647(2011). https://doi.org/10.1021/nl200658a
  25. Li, H., Sun, M., Zhang, T., Fang, Y. and Wang, G., "Improving the Performance of PEDOT-PSS Coated Sulfur@activated Porous Graphene Composite Cathodes for Lithium-sulfur Batteries," J. Mater. Chem. A, 2, 18345(2014).
  26. Wu, F., Chen, J., Chen, R., Wu, S., Li, L., Chen, S. and Zhao, T., "Sulfur/Polythiophene with a Core/Shell Structure: Synthesis and Electrochemical Properties of the Cathode for Rechargeable Lithium Batteries," Phys. Chem. C, 115, 6057(2011).
  27. Luo, Y., Guo, R., Li, T., Li, F., Liu, Z., Zheng, M., Wang, B., Yang, Z., Luo, H. and Wan, Y., "Application of Polyaniline for Li-Ion Batteries, Lithium-Sulfur Batteries, and Supercapacitorss," ChemSusChem, 12, 1591(2019).
  28. Yang, S., Zhang, Z., Lin, J., Zhang, L., Wang, L., Chen, S., Zhang, C. and Liu, X., "Recent Progress in Quasi/All-Solid-State Electrolytes for Lithium-Sulfur Batteries," Front. Energy Res., 10, 945003(2022).
  29. Wang, C., Wang, X., Yang, Y., Kushima, A., Chen, J., Huang, Y. and Li, J., "Slurryless Li2S/Reduced Graphene Oxide Cathode Paper for High-Performance Lithium Sulfur Battery," Nano Lett., 15, 1796(2015).
  30. Chong, W., Xiao, Y., Huang, J. Q., Yao, S., Cui, J., Qin, L., Gao, C. and Kim, J. K., "Highly Conductive Porous Graphene/sulfur Composite Ribbon Electrodes for Flexible Lithium-sulfur Batteries," Nanoscale, 10, 21132(2018).
  31. Chen, S., Zhang, J., Wang, Z., Nie, L., Hu, X., Yu, Y. and Liu, W., "Electrocatalytic NiCo2O4 Nanofiber Arrays on Carbon Cloth for Flexible and High-Loading Lithium-Sulfur Batteries," Nano Lett., 21, 5285(2021).
  32. Pang, Q., Liang, X., Kwok, C. Y. and Nazar, L. F., "Advances in Lithium-sulfur Batteries Based on Multifunctional Cathodes and Electrolytes," Nat. Energy, 1, 16132(2016).
  33. Shao, H., Wang, W., Zhang, H., Wang, A., Chen, X. and Huang, Y., "Nano-TiO2 Decorated Carbon Coating on the Separator to Physically and Chemically Suppress the Shuttle Effect for Lithium-Sulfur Battery," J. Power Sources, 378, 537-545(2018). https://doi.org/10.1016/j.jpowsour.2017.12.067
  34. Chen, H., Dong, W. D., Xia, F. J., Zhang, Y. J., Yan, M., Song, J. P., Zou, W., Liu, Y., Hu, Z.-Y., Liu, J., Li, Y., Wang, H. E., Chen, L. H. and Su, B. L., "Hollow Nitrogen-Doped Carbon/Sulfur@MnO2 Nanocomposite with Structural and Chemical Dual-Encapsulation for Lithium-Sulfur Battery," Chem. Eng. J., 381, 122746(2020).
  35. Guo, Y., Li, J., Pitcheri, R., Zhu, J., Wen, P. and Qiu, Y., "Electrospun Ti4O7/C Conductive Nanofibers as Interlayer for Lithium-Sulfur Batteries with Ultra Long Cycle Life and High-Rate Capability," Chem. Eng. J., 355, 390-398(2019). https://doi.org/10.1016/j.cej.2018.08.143
  36. Liu, Q., Jiang, Q., Jiang, L., Peng, J., Gao, Y., Duan, Z. and Lu, X., "Preparation of SnO2@rGO/CNTs/S Composite and Application for Lithium-Sulfur Battery Cathode Material," Appl. Surf. Sci., 462, 393-398(2018). https://doi.org/10.1016/j.apsusc.2018.08.038
  37. Liu, M., Hou, J., Xiang, J., Shen, X., Luan, K. and Zhang, Y., "Effect of Non-Woven Al2O3/C Nanofibers as Functional Interlayer on Electrochemical Performance of Lithium-Sulfur Batteries," J. Nanosci. Nanotechnol., 18(11), 7824-7829(2018). https://doi.org/10.1166/jnn.2018.15543
  38. Campbell, B., Bell, J., Bay, H. H., Favors, Z., Ionescu, R., Ozkan, C. S. and Ozkan, M., "SiO2-Coated Sulfur Particles with Mildly Reduced Graphene Oxide as a Cathode Material for Lithium-Sulfur Batteries," Nanoscale, 7(16), 7051-7055(2015). https://doi.org/10.1039/C4NR07663J
  39. Wu, Y., Li, D., Pan, J., Sun, Y., Huang, W., Wu, M., Zhang, B., Pan, F., Shi, K. and Liu, Q., "Realizing Fast Polysulfides Conversion within Yolk-Shelled NiO@HCSS Nanoreactor as Cathode Host for High-Performance Lithium-Sulfur Batteries," J. Mater. Chem. A, 10(30), 16309-16318(2022). https://doi.org/10.1039/D2TA03421B
  40. Wu, F., Chen, J., Chen, R., Wu, S., Li, L., Chen, S. and Zhao, T., "Sulfur/Polythiophene with a Core/Shell Structure: Synthesis and Electrochemical Properties of the Cathode for Rechargeable Lithium Batteries," J. Phys. Chem. C, 115(13), 6057-6063(2011). https://doi.org/10.1021/jp1114724
  41. Mentbayeva, A., Belgibayeva, A., Umirov, N., Zhang, Y., Taniguchi, I., Kurmanbayeva, I. and Bakenov, Z., "High Performance Freestanding Composite Cathode for Lithium-Sulfur Batteries," Electrochim. Acta., 217, 242-248(2016). https://doi.org/10.1016/j.electacta.2016.09.082
  42. Kim, J., Kang, Y., Song, S. W. and Suk, J., "Freestanding SulfurGraphene Oxide/Carbon Composite Paper as a Stable Cathode for High Performance Lithium-Sulfur Batteries," Electrochim. Acta., 299, 27-33(2019). https://doi.org/10.1016/j.electacta.2018.12.165
  43. Kose, H., Kurt, B. S., Dombaycioglu, S. and Aydin, A. O., "Rational Design of Cathode Structure Based on Free-Standing S/rGO/CNT Nanocomposite for Li-S Batteries," Synth. Met., 267, 116471(2020).
  44. Zhang, Y. Z., Zhang, Z., Liu, S., Li, G. R. and Gao, X. P., "Free-Standing Porous Carbon Nanofiber/Carbon Nanotube Film as Sulfur Immobilizer with High Areal Capacity for Lithium-Sulfur Battery," ACS Appl. Mater. Interfaces, 10(10), 8749-8757(2018). https://doi.org/10.1021/acsami.8b00190
  45. Wang, C., Wang, X., Wang, Y., Chen, J., Zhou, H. and Huang, Y., "Macroporous Free-Standing Nano-Sulfur/Reduced Graphene Oxide Paper as Stable Cathode for Lithium-Sulfur Battery," Nano Energy, 11, 678-686(2015). https://doi.org/10.1016/j.nanoen.2014.11.060
  46. Wang, D., Xu, R., Wang, X. and Li, Y., "NiO Nanorings and Their Unexpected Catalytic Property for Co Oxidation," Nanotechnol., 17(4), 979-983(2006). https://doi.org/10.1088/0957-4484/17/4/023
  47. Dhaouadi, H., Chaabane, H. and Touati, F., "Mg(OH)2 Nanorods Synthesized by A Facile Hydrothermal Method in the Presence of CTAB," Nano-Micro Lett., 3(3), 153-159(2011). https://doi.org/10.1007/BF03353666
  48. Setoudeh, N., Zamani, C. and Sajjadnejad, M., "Mechanochemical Synthesis of Nanostructured MgxNi1-xO Compound by Mg-NiO Mixture," J. Ultrafine Grained Nanostruct. Mater., 50(1), 51-59(2017).
  49. Li, Y., Lu, G. and Ma, J., "Highly Active and Stable Nano NiO-MgO Catalyst Encapsulated by Silica with a Core-Shell Structure for CO2 Methanation," RSC Adv., 4(34), 17420-17428(2014). https://doi.org/10.1039/C3RA46569A
  50. Wu, J., Pan, Z., Dai, Y., Wang, T., Zhang, H., Yan, S., Xu, J. and Song, K., "Encapsulation of Sulfur Cathodes by Sericin-Derived Carbon/Co3O4 Hollow Microspheres for the Long-Term Cyclability of Lithium-Sulfur Batteries," J. Alloys Compd., 823, 153912 (2020).
  51. Liu, J., Yuan, L., Yuan, K., Li, Z., Hao, Z., Xiang, J. and Huang, Y., "SnO2 as a High-efficiency Polysulfide Trap in Lithium-sulfur Batteries," Nanoscale, 8, 13638(2016)
  52. Yuan, Z., Peng, H. J., Hou, T. Z., Huang, J. Q., Chen, C. M., Wang, D. W., Cheng, X. B., Wei, F. and Zhang, Q., "Powering Lithium-Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts," Nano Lett., 16(1), 519-527(2016). https://doi.org/10.1021/acs.nanolett.5b04166
  53. Hu, L., Dai, C., Lim, J. M., Chen, Y., Lian, X., Wang, M., Li, Y., Xiao, P., Henkelman, G. and Xu, M., "A Highly Efficient Double-Hierarchical Sulfur Host for Advanced Lithium-Sulfur Batteries," Chem. Sci., 9(3), 666-675(2018). https://doi.org/10.1039/C7SC03960C
  54. Shen, C., Xie, J., Zhang, M. Andrei, P., Zheng, J. P., Hendrickson, M. and Plichta, E. J., "A Li-Li2S4 Battery with Improved Discharge Capacity and Cycle Life at Low Electrolyte/Sulfur Ratios,"J. Power Sources, 414, 412-419(2019). https://doi.org/10.1016/j.jpowsour.2019.01.029
  55. Zhang, Z., Li, Q., Zhang, K., Chen, W., Lai, Y. and Li, J., "Titanium-Dioxide-Grafted Carbon Paper with Immobilized Sulfur as a Flexible Free-Standing Cathode for Superior Lithium-Sulfur Batteries,"J. Power Sources, 290, 159-167(2015). https://doi.org/10.1016/j.jpowsour.2015.05.010
  56. Xue, W., Yan, Q.-B., Xu, G., Suo, L., Chen, Y., Wang, C., Wang, C. A. and Li, J., "Double-Oxide Sulfur Host for Advanced Lithium-Sulfur Batteries," Nano Energy, 38, 12-18(2017). https://doi.org/10.1016/j.nanoen.2017.05.041
  57. Ma, F., Liang, J., Wang, T., Chen, X., Fan, Y., Hultman, B., Xie, H., Han, J., Wu, G. and Li, Q., "Efficient Entrapment and Catalytic Conversion of Lithium Polysulfides on Hollow Metal Oxide Submicro-Spheres as Lithium-Sulfur Battery Cathodes," Nanoscale, 10(12), 5634-5641(2018). https://doi.org/10.1039/C7NR09216D
  58. Peng, H., Zhang, Y., Chen, Y., Zhang, J., Jiang, H., Chen, X., Zhang, Z., Zeng, Y., Sa, B., Wei, Q., Lin, J. and Guo, H., "Reducing Polarization of Lithium-Sulfur Batteries Via ZnS/Reduced Graphene Oxide Accelerated Lithium Polysulfide Conversion," Mater. Today Energy, 18, 100519(2020).
  59. Singhal, R., Chung, S. H., Manthiram, A. and Kalra, V., "A Free-Standing Carbon Nanofiber Interlayer for High-Performance Lithium-Sulfur Batteries," J. Mater. Chem. A, 3(8), 4530-4538(2015). https://doi.org/10.1039/C4TA06511E
  60. Majumder, S., Shao, M., Deng, Y. and Chen, G., "Two Dimensional WS2/C Nanosheets as a Polysulfides Immobilizer for High Performance Lithium-Sulfur Batteries," J. Electrochem. Soc., 166, A5386(2019).
  61. Li, J., Yang, Q.-Q., Hu, Y. X., Liu, M. C., Lu, C., Zhang, H., Kong, L. B., Liu, W. W., Niu, W. J., Zhao, K., Wang, Y. C., Cheng, F., Wang, Z. M. and Chueh, Y. L., "Design of Lamellar Mo2C Nanosheets Assembled by Mo2C Nanoparticles as an Anode Material toward Excellent Sodium-Ion Capacitors," ACS Sustain. Chem. Eng., 7, 18375(2019).
  62. Li, B., Han, C., He, Y. B., Yang, C., Du, H., Yang, Q. H. and Kang, F., "Facile Synthesis of Li4Ti5O12/C Composite with Super Rate Performance," Energy Environ. Sci., 5, 9595(2012).
  63. Seh, Z. W., Sun, Y., Zhang, Q. and Cui, Y., "Designing High-Energy Lithium-Sulfur Batteries," Chem. Soc. Rev., 45(20), 5605-5634(2016). https://doi.org/10.1039/C5CS00410A
  64. Lee, Y. S. and Ryu, K. S., "Study of the Lithium Diffusion Properties and High Rate Performance of TiNb6O17 as An Anode in Lithium Secondary Battery," Sci. Rep., 7, 16617(2017).
  65. Li, M., Zhou, J., Zhou, J., Guo, C., Han, Y., Zhu, Y., Wang, G. and Qian, Y., "Ultrathin SnS2 Nanosheets as Robust Polysulfides Immobilizers for High Performance Lithium-Sulfur Batteries," Mater. Res. Bull., 96, 509-515(2017). https://doi.org/10.1016/j.materresbull.2017.05.016