DOI QR코드

DOI QR Code

전기자동차 배터리 모듈 접합 기술 리뷰

Battery Module Bonding Technology for Electric Vehicles

  • 방정환 (한국생산기술연구원 접합적층연구부문) ;
  • 김신일 (한국생산기술연구원 접합적층연구부문) ;
  • 김윤찬 (한국생산기술연구원 접합적층연구부문) ;
  • 유동열 (한국생산기술연구원 접합적층연구부문) ;
  • 김동진 (한국생산기술연구원 접합적층연구부문) ;
  • 이태익 (한국생산기술연구원 접합적층연구부문) ;
  • 김민수 (한국생산기술연구원 접합적층연구부문) ;
  • 박지용 (한국생산기술연구원 접합적층연구부문)
  • Junghwan Bang (Advanced Joining & Additive Manufacturing R&D Department, Korea Institute of Industrial Technology(KITECH)) ;
  • Shin-Il Kim (Advanced Joining & Additive Manufacturing R&D Department, Korea Institute of Industrial Technology(KITECH)) ;
  • Yun-Chan Kim (Advanced Joining & Additive Manufacturing R&D Department, Korea Institute of Industrial Technology(KITECH)) ;
  • Dong-Yurl Yu (Advanced Joining & Additive Manufacturing R&D Department, Korea Institute of Industrial Technology(KITECH)) ;
  • Dongjin Kim (Advanced Joining & Additive Manufacturing R&D Department, Korea Institute of Industrial Technology(KITECH)) ;
  • Tae-Ik Lee (Advanced Joining & Additive Manufacturing R&D Department, Korea Institute of Industrial Technology(KITECH)) ;
  • Min-Su Kim (Advanced Joining & Additive Manufacturing R&D Department, Korea Institute of Industrial Technology(KITECH)) ;
  • Jiyong Park (Advanced Joining & Additive Manufacturing R&D Department, Korea Institute of Industrial Technology(KITECH))
  • 투고 : 2022.06.20
  • 심사 : 2023.06.30
  • 발행 : 2023.06.30

초록

전기자동차 산업은 전 세계적 환경규제 정책과 더불어 각 국 정부의 지원이 맞물려 성장이 가속화 되고 있다. 따라서 전기자동차용 배터리에 대한 수요는 지속적으로 증가할 것으로 예상된다. 전기자동차 배터리 시스템은 다수의 배터리 셀 및 모듈을 전기적으로 연결시켜 하나의 배터리 팩으로 적용된다. 이러한 배터리 셀 및 모듈을 접합하는 기술은 성능, 용량 및 안정성에 직접적인 영향을 주기 때문에 매우 중요하다. 따라서 기계적, 전기적 특성 등 여러 기준들을 고려하여 견고하게 조립되어야 한다. 각각의 접합 기술은 서로 다른 장점과 한계를 가지고 있으며, 배터리 셀에 적용할 때에는 몇 가지 기준이 고려되어야 한다. 본 논문에서는 다양한 배터리 셀 형태에 따른 접합기술의 적용 현황을 조사하고, 저항 용접 및 레이저, 초음파 등 대표적 접합기술에 대한 특징과 장단점을 제공하고자 한다.

Throughout all industries, eco-friendliness is being promoted worldwide with focus on suppressing the environmental impact. With recent international environment policies and regulations supported by government, the electric vehicles demand is expected to increase rapidly. Battery system itself perform an essential role in EVs technology that is arranged in cells, modules, and packs, and each of them are connected mechanically and electrically. A multifaceted approach is necessary for battery pack bonding technologies. In this paper, pros and cons of applicable bonding technologies, such as resistance welding, laser and ultrasonic bonding used in constructing electric vehicle battery packs were compared. Each bonding technique has different advantages and limitations. Therefore, several criteria must be considered when determining which bonding technology is suitable for a battery cell. In particular, the shape and production scale of battery cells are seen as important factors in selecting a bonding method. While dealing with the types and components of battery cells, package bonding technologies and general issues, we will review suitable bonding technologies and suggest future directions.

키워드

과제정보

본 논문은 인천시 반도체 후공정 소부장 산업경쟁력 강화사업의 지원을 받아 수행한 연구입니다.

참고문헌

  1. G. M. Jeon, "내연기관자동차와 전기자동차의 공존", Petroleum & Energy, 306, 26-29 (2018). 
  2. A. Sharif, Y. C. Chan, and R. A. Islam, "Effect of volume ininterfacial reaction between eutectic Sn-Pb solder and Cumetallization in microelectronic packaging", Mater. Sci. Eng., B106, 120 (2004). 
  3. S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature, 488, 294-303 (2012).  https://doi.org/10.1038/nature11475
  4. A. Das, D. Li, D. Williams, and D. Greenwood, Joining Technologies for Automotive Battery Systems Manufacturing, World Electric Vehicle Journal, 9(2), 22 (2018). 
  5. M. Sahin, Joining of aluminium and copper materials with friction welding, Journal of Advanced Manufacturing Technology, 49, 527-534 (2010).  https://doi.org/10.1007/s00170-009-2443-7
  6. C. Tan, Z. Jiang, L. Li, Y. Chen, and X. Chen, "Microstructural evolution and mechanical properties of dissimilar Al-Cu joints produced by friction stir welding, Materials & Design, 51, 466-473 (2013).  https://doi.org/10.1016/j.matdes.2013.04.056
  7. D. S. Buck, R. N. Fattig, and B. J. Silk, "Battery pack with integral cooling and bussing devices", Enerdel, USA, (2008). 
  8. T. Kawakatsu, T. Fukuoka, K. Tsutsui, I. Katsumata, and Y. Hattori, "Nickel-Metal Hydride Battery for Hybrid Electric Vehicles", Matsushita Technical Journal, 52(4), (2006). 
  9. T. Matsuoka, K. Matsumoto, H. Takedomi, and Hasegawa, "Charging Element Device And Holding Structure Therefor", Honda Giken Kogyo Kabushiki Kaisha, (2002). 
  10. M. Pfriem and F. Gauterin, "Development of Real-World Driving Cycles for Battery Electric Vehicles", World Electr. Veh. J., 8, 14-24, (2016).  https://doi.org/10.3390/wevj8010014
  11. M. Keynes, "Our Guide to Batteries; Johnson Matthey Battery Systems", JMBS, UK, (2015). 
  12. G. Reinhart, T. Zeilinger, J. Kurfer, M. Westermeier, C. Thiemann, M. Glonegger, M. Wunderer, C. Tammer, M. Schweier, and M. Heinz, "Research and Demonstration Center for the Production of Large-Area Lithium-Ion Cells", Springer, Berlin, Germany, pp. 3-12, (2013). 
  13. S. Dong, G. Kelkar, and Y. Zhou, "Electrode Sticking During Micro-Resistance Welding of Thin Metal Sheets", IEEE Trans. Electron. Packag. Manuf., 25, 355-361, (2002).  https://doi.org/10.1109/TEPM.2002.807732
  14. G. Shannon, "Battery Welding: Using Lasers for Tab Welding Applications", Amada Miyachi Blog, (2002), http://info.amadamiyachi.com/blog/laser-welding-tabs-for-battery-packmanufacture. 
  15. X. Sun, "Effect of Projection Height on Projection Collapse and Nugget Formation-A Finite Element Study", Weld. J., 80, 211-216, (2001). 
  16. G. Shannon, "Applying the Right Technology for Welding Batteries", (2014), Available online: http://weldingdesign.com/operations/selecting-applying-right-technology-welding-batteries?page=3. 
  17. G. Berdichevsky, K. Kelty, J. Straubel, and E. Toomre, "The Tesla Roadster Battery System", Tesla Motors: Palo Alto, CA, USA, (2006). 
  18. I. Lum, M. Mayer, and Y. Zhou, "Footprint Study of Ultrasonic Wedge-Bonding with Aluminum Wire on Copper Substrate", J. Electron. Mater., 35, 433-442, (2006).  https://doi.org/10.1007/BF02690530
  19. H. Saariluoma, A. Piiroinen, A. Unt, J. Hakanen, T. Rautava, and A. Salminen, "Overview of optical digital measuring challenges and technologies in laser welded components in EV battery module design and manufacturing", Batteries, 6(3), 47, (2020). 
  20. M. J. Kang, W. S. Choi, and S. H. Kang, "Ultrasonic and Laser Welding Technologies on Al/Cu Dissimilar Materials for the Lithium-Ion Battery Cell or Module Manufacturing", Journal of Welding and Joining, 37(2), 52-59, (2019).  https://doi.org/10.5781/JWJ.2019.37.2.8
  21. M. Park and Y. Hirata, "Research on Generation of Micro-Plasma Arc and Its Power Intensity", Weld. Int., 31, 284-290, (2017).  https://doi.org/10.1080/09507116.2016.1223214
  22. Y. Hirata, "Pulsed Arc Welding", Weld. Int., 17, 98-115 (2003).  https://doi.org/10.1533/wint.2003.3075
  23. M. J. Brand, P. A. Schmidt, M. F. Zaeh, and A. Jossen, "Welding techniques for battery cells and resulting electrical contact resistances", J. Energy Storage, 1(1), 7-14 (2015).  https://doi.org/10.1016/j.est.2015.04.001
  24. P. Taheri, S. Hsieh, and M. Bahrami, "Investigating electrical contact resistance losses in lithium-ion battery assemblies for hybrid and electric vehicles", J. Power Sources, 196(15), 6525-6533 (2011).  https://doi.org/10.1016/j.jpowsour.2011.03.056
  25. M. F. R. Zwicker, M. Moghadam, W. Zhang, and C. V. Nielsen, "Automotive battery pack manufacturing a review of battery to tab joining", Journal of Advanced Joining Processes 1, 100017, (2020). 
  26. M. Abbasi, A. K. Taheri, and M. Salehi, "Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process", Journal of Alloys and Compounds, 319, 233-241, (2001).  https://doi.org/10.1016/S0925-8388(01)00872-6
  27. E. De Vries, "Mechanics and Mechanisms of Ultrasonic Metal Welding", The Ohio State University, Columbus, OH, USA, (2004). 
  28. A. Siddiq and E. Ghassemieh, "Thermomechanical Analyses of Ultrasonic Welding Process Using Thermal and Acoustic Softening Effects", Mech. Mater., 40, 982-1000, (2008).  https://doi.org/10.1016/j.mechmat.2008.06.004
  29. T. H. Kim, J. Yum, S. J. Hu, J. P. Spicer, and J. A. Abell, "Process Robustness of Single Lap Ultrasonic Welding of Thin, Dissimilar Materials", CIRP Ann. Manuf. Technol., 60, 17-20, (2011).  https://doi.org/10.1016/j.cirp.2011.03.016
  30. S. S. Lee, T. H. Kim, S. J. Hu, W. W. Cai, J. A. Abell, and J. Li, "Characterization of Joint Quality in Ultrasonic Welding of Battery Tabs", J. Manuf. Sci. Eng., 135, 021004, (2013). 
  31. H. T. Fujii, H. Endo, Y. S. Sato, and H. Kokawa, "Interfacial microstructure evolution and weld formation during ultrasonic welding of Al alloy to Cu, Materials Characterization", 139, 233-240, (2018).  https://doi.org/10.1016/j.matchar.2018.03.010
  32. C. Walsh, "Laser Welding-Literature Review", University of Cambridge, Cambridge, UK, (2002). 
  33. W. M. Steen and Mazumder, "In Laser Material Processing", J. Laser Welding, Eds., Springer, London, UK, pp. 199-249 (2010). 
  34. P. Schmalen, P. Plapper, and W. Cai, "Process Robustness of Laser Braze-Welded Al/Cu Connectors", SAE Int, J. Altern, Power, 5, 195-204, (2016).  https://doi.org/10.4271/2016-01-1198
  35. M. J. Brand, P. A. Schmidt, M. F. Zaeh, and A. Jossen, "Welding Techniques for Battery Cells and Resulting Electrical Contact Resistances", J. Energy Storage, 1, 7-14, (2015).  https://doi.org/10.1016/j.est.2015.04.001
  36. Y. Zhou, P. Gorman, W. Tan, and K. J. Ely, "Weldability of Thin Sheet Metals During Small-Scale Resistance Spot Welding Using an Alternating-Current Power Supply", J. Electr. Mater, 29, (2000). 
  37. G. Shannon, "Improve Tab to Terminal Connections in Battery Pack Manufacturing", Amada Miyachi America Inc., Monrovia, CA, USA, (2016). 
  38. J. Varis, "Ensuring the Integrity in Clinching Process", J. Mater. Process. Technol, 174, 277-285, (2006).  https://doi.org/10.1016/j.jmatprotec.2006.02.001
  39. T. Balawender, T. Sadowski, and M. Knec, "Technological Problems and Experimental Investigation of Hybrid: Clinched-Adhesively Bonded Joint", Arch. Metall. Mater., 56, 438-446 (2011). 
  40. C. S. Kang and J. P. Jung, "Micro-Joining", Samsung books, Seoul, Korea , ISBN 89-88197-51-8, 4, (2004). 
  41. H. J. Kang, B. G. Baek, and J. P. Jung, "Recent Low Temperature Solder of SnBi and Its Bonding Characteristics", Journal of Welding and Joining, 38(6), 576-583, (2020).  https://doi.org/10.5781/JWJ.2020.38.6.8
  42. J. H. Bang, D. Y. Yu, Y. H. Ko, J. H. Son, H. Nishikawa, and C. W. Lee, "Intermetallic compound growth between Sn-Cu-Cr lead-free solder and Cu substrate", Microelectronics Reliability, 99, 62-73 Contents, (2019).  https://doi.org/10.1016/j.microrel.2019.05.019
  43. J. H. Bang, D. Y. Yu, M. Yang, Y. H. Ko, J. W. Yoon, H. Nishikawa, and C. W. Lee, "Improvement in Thermomechanical Reliability of Low Cost Sn-Based BGA Interconnects by Cr Addition", Metals, 8, 586, (2018). 
  44. M. Kamal and El. S. Gouda, "Effect of zinc additions on structure and properties of Sn-Ag eutectic lead-free solder alloy", J. Mater. Sci. Mater. Electron., 19, 81-84, (2008).  https://doi.org/10.1007/s10854-007-9289-2
  45. A. K. Gain, T. Fouzder, Y. C. Chan, and W. K. C. Yung, "Microtructure, kinetic analysis and hardness of Sn-Ag- Cu-1 wt% nano-ZrO2 composite solder on OSP-Cu pads", J. Alloys Compd., 509(7), 3319-3325, (2011).  https://doi.org/10.1016/j.jallcom.2010.12.048
  46. I. E. Anderson, "Development of Sn-Ag-Cu and Sn-Ag- Cu-X alloys for Pb-free electronic solder applications", J. Mater. Sci. Mater. Electron., 18, 55-76, (2007).  https://doi.org/10.1007/s10854-006-9011-9
  47. L. Liu, P. Wu, and W. Zhou, "Effects of Cu on the interfacial reactions between Sn-8Zn-3Bi-xCu solders and Cu substrate", Microelectronics Reliability, 54(1), 259-264, (2014).  https://doi.org/10.1016/j.microrel.2013.10.001
  48. M. J. Brand, E. I. Kolp, P. Berg, T. Bach, P. Schmidt, and A. Jossen, "Electrical resistances of soldered battery cell connections". J. Energy Storage, 12, 45-54 (2017).  https://doi.org/10.1016/j.est.2017.03.019
  49. M. J. Brand, P. A. Schmidt, M. F. Zaeh, and A. Jossen, "Welding techniques for battery cells and resulting electrical contact resistances", J. Energy Storage, 1(1), 7-14, (2015).  https://doi.org/10.1016/j.est.2015.04.001
  50. P. R. Bonenberger, "The First Snap-Fit Handbook", 3rd ed., Hanser, Munich, Germany, pp. I-XXII, (2016). 
  51. L. Shui, F. Chen, A. Garg, X. Peng, N. Bao, and J. Zhang, "Design optimization of battery pack enclosure for electric vehicle", Struct. Multidiscip. Optim., 58(1), 331-347, (2018).  https://doi.org/10.1007/s00158-018-1901-y
  52. S. K. Hong, B. Epureanu, and M. Castanier, "Parametric Reduced-Order Models of Battery Pack Vibration Including Structural Variation and Pre-Stress Effects", In SAE 2013 Noise and Vibration Conference and Exhibition, (2013). 
  53. H. Nishikawa and N. Iwata, "Formation and growth of intermetallic compound layers at the interface during laser soldering using Sn-Ag Cu solder on a Cu Pad", Journal of Materials Processing Technology, 215, 6-11, (2015).  https://doi.org/10.1016/j.jmatprotec.2014.08.007
  54. H. Nishikawa and S. Kubota, "Impact strength of Sn-58mass%Bi/Cu joints by laser process", European Microelectronics Packaging Conference, September, Friedrichshafen, Germany, (2015). 
  55. M. Fleckenstein, O. Bohlen, M. A. Roscher, and B. Baker, "Current density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4as cathode material due to temperature gradients", J. Power Sources, 196(10), 4769-4778, (2011).  https://doi.org/10.1016/j.jpowsour.2011.01.043
  56. N. Yang, X. Zhang, B. Shang, and G. Li, "Unbalanced discharging and ageing due to temperature differences amongst the cells in a lithium-ion battery pack with parallel combination", J. Power Sources, 306, 733-741, (2016).  https://doi.org/10.1016/j.jpowsour.2015.12.079
  57. L. Shui, F. Chen, A. Garg, X. Peng, N. Bao, and J. Zhang, "Design optimization of battery pack enclosure for electric vehicle". Struct. Multidiscip. Optim., 58(1), 331-347, (2018).  https://doi.org/10.1007/s00158-018-1901-y
  58. O. Mokhtari and H. Nishikawa, "Effects of In and Ni Addition on Microstructure of Sn-58Bi Solder Joint", Journal of Electronic Materials, 43(11), (2014). 
  59. S. S. Lee, T. H. Kim, S. J. Hu, W. Cai, and J. A. Abell, "Joining Technologies for Automotive Li-Ion Battery Manufacturing: A Review", ASME Conference Proceedings (49460). 541-549, (2010). 
  60. D. Lee and W. Cai, "The effect of horn knurl geometry on battery tab ultrasonic welding quality, 2D finite element simulations", Journal of Manufacturing Processes, 28, 428-441, (2017).  https://doi.org/10.1016/j.jmapro.2017.04.009
  61. R. V. Nanditta and N. B. Rahul, "Review on Comparative Study of Various, Automotive Cell Joining Techniques and Challenges", Proceedings of the International Conference on Electronics and Renewable Systems, (2022).