과제정보
This work is partially supported by National Research Foundation (of S. Korea) grants No. 2022R1A2B5B01001445 and by a KIAS Individual Grant (MG089001) at Korea Institute for Advanced Study.
참고문헌
- K. Ando, H. Kang, Y. Miyanishi and M. Putinar, Spectral analysis of Neumann-Poincare operator, Rev. Roumaine Math. Pures Appl, Vol. LXVI (2021), 545-575.
- H. Kang, Spectral Geometry and Analysis of the Neumann-Poincare Operator, a Review, In: Kang, NG., Choe, J., Choi, K., Kim, Sh. (eds) Recent Progress in Mathematics. KIAS Springer Series in Mathematics, vol 1. Springer, Singapore, 2022. https://doi.org/10.1007/978-981-19-3708-8_4
- D. Khavinson, M. Putinar and H.S. Shapiro, Poincare's variational problem in potential theory ' , Arch. Rational Mech. Anal, 185 (2007), 143-184. https://doi.org/10.1007/s00205-006-0045-1
- S. Fukushima, H. Kang and Y. Miyanishi, Decay rate of the eigenvalues of the Neumann-Poincare operator, arXiv:2304.04772.
- K. Ando and H. Kang, Analysis of plasmon resonance on smooth domains using spectral properties of the Neumann-Poincare operator, Jour. Math. Anal. Appl, 435 (2016), 162-178. https://doi.org/10.1016/j.jmaa.2015.10.033
- H. Ammari, G. Ciraolo, H. Kang, H. Lee and G.W. Milton, Spectral theory of a Neumann-Poincare-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Rational Mech. Anal, 208 (2013), 667-692. https://doi.org/10.1007/s00205-012-0605-5
- R. C. McPhedran and G. W. Milton, A review of anomalous resonance, its associated cloaking, and superlensing, C. R. Phy, 21 (2020), 409-423. https://doi.org/10.5802/crphys.6
- H. Ammari and H. Kang, Polarization and moment tensors with applications to inverse problems and effective medium theory, Applied Mathematical Sciences, Vol. 162, Springer-Verlag, New York, 2007.
- K. Ando, H. Kang and Y. Miyanishi, Exponential decay estimates of the eigenvalues for the Neumann-Poincare operator on analytic boundaries in two dimensions, J. Integr. Equ. Appl, 30 (2018), 473-489. https://doi.org/10.1216/JIE-2018-30-4-473
- E. Bonnetier and H. Zhang, Characterization of the essential spectrum of the Neumann-Poincare operator in 2D domains with corner via Weyl sequences, Rev. Mat. Iberoam, 35 (2019), 925-948. https://doi.org/10.4171/rmi/1075
- J. Helsing and K.-M. Perfekt, On the Polarizability and Capacitance of the Cube, Applied and Computational Harmonic Analysis, 34 (2013), 445-468.
- J. Helsing and K.-M. Perfekt, The spectra of harmonic layer potential operators on domains with rotationally symmetric conical points, J. Math. Pures Appl, 118 (2018), 235--287. https://doi.org/10.1016/j.matpur.2017.10.012
- H. Kang, M. Lim and S. Yu, Spectral resolution of the Neumann-Poincare operator on intersecting disks and analysis of plasmon resonance, Arch. Rational Mech. Anal, 226(1) (2017), 83-115. https://doi.org/10.1007/s00205-017-1129-9
- K.-M. Perfekt and M. Putinar, Spectral bounds for the Neumann-Poincare operator on planar domains with corners, J. d'Analyse Math, 124 (2014), 39-57. https://doi.org/10.1007/s11854-014-0026-5
- K.M. Perfekt and M. Putinar, The essential spectrum of the Neumann-Poincare operator on a domain with corners, Arch. Rational Mech. Anal, 223 (2017), 1019-1033. https://doi.org/10.1007/s00205-016-1051-6
- K.-M. Perfekt. Plasmonic eigenvalue problem for corners: limiting absorption principle and absolute continuity in the essential spectrum, J. Math. Pures Appl, 145 (2021), 130-162. https://doi.org/10.1016/j.matpur.2020.07.001
- Y. Miyanishi, Weyl's law for the eigenvalues of the Neumann-Poincare operators in three dimensions: Will-more energy and surface geometry, Adv. Math, 406 (2022), 108547.
- Y. Miyanishi and G. Rozenblum, Eigenvalues of the Neumann-Poincare operator in dimension 3: Weyl's law and geometry, Algebra i Analiz 31(2) (2019), 248-268; reprinted in St. Petersburg Math. J, 31(2) (2020), 371-386. https://doi.org/10.1090/spmj/1602
- Y. Jung and M. Lim, A decay estimate for the eigenvalues of the Neumann-Poincare operator using the Grunsky coefficients, Proc. Amer. Math. Soc, 148 (2020), 591-600. https://doi.org/10.1090/proc/14785
- Y. Miyanishi and T. Suzuki, Eigenvalues and eigenfunctions of double layer potentials, Trans. Amer. Math. Soc. 369 (2017), 8037-8059. https://doi.org/10.1090/tran/6913
- J. Delgado and M. Ruzhansky, Schatten classes on compact manifolds: kernel conditions, J. Funct. Anal, 267(3) (2014), 772-798. https://doi.org/10.1016/j.jfa.2014.04.016
- S. Fukushima and H. Kang, Spectral structure of the Neumann-Poincare operator on axially symmetric functions, in preparation.
- K. Ando, H. Kang, Y. Miyanishi and T. Nakazawa, Surface localization of plasmons in three dimensions and convexity, SIAM J. Appl. Math, 81 (2021), 1020-1033. https://doi.org/10.1137/20M1373530
- Y. Ji and H. Kang, A concavity condition for existence of a negative value in Neumann-Poincare spectrum in three dimensions, Proc. Amer. Math. Soc, 147 (2019), 3431-3438. https://doi.org/10.1090/proc/14467
- M. S. Birman and M. Z. Solomjak, Asymptotic behavior of the spectrum of pseudodifferential operators with anisotropically homogeneous symbols, Vestnik Leningrad. Univ, (13 Mat. Meh. Astronom. vyp. 3), 169 (1977), 13-21.
- G.W. Milton and N.-A.P. Nicorovici, On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. A, 462 (2006), 3027-3059. https://doi.org/10.1098/rspa.2006.1715
- D. Chung, H. Kang, K. Kim and H. Lee, Cloaking due to anomalous localized resonance in plasmonic structures of confocal ellipses, SIAM J. Appl. Math, 74 (2014), 1691-1707. https://doi.org/10.1137/140956762
- H. Ammari, G. Ciraolo, H. Kang, H. Lee and G.W. Milton, Spectral theory of a Neumann-Poincare-type operator and analysis of anomalous localized resonance II, Contemporary Math, 615 (2014), 1-14. https://doi.org/10.1090/conm/615/12244
- H. Ammari, H. Kang, and H. Lee, A boundary integral method for computing elastic moment tensors for ellipses and ellipsoids, J. Comp. Math, 25 (1) (2007), 2-12.
- V.D. Kupradze, Potential methods in the theory of elasticity, Daniel Davey & Co., New York, 1965.
- K. Ando, Y. Ji, H. Kang, K. Kim and S. Yu, Spectral properties of the Neumann-Poincare operator and cloaking by anomalous localized resonance for the elasto-static system, Euro. J. Appl. Math, 29 (2018), 189-225. https://doi.org/10.1017/S0956792517000080
- B.E.J. Dahlberg, C.E. Kenig and G.C. Verchota, Boundary value problems for the systems of elastostatics in Lipschitz domains, Duke Math. J, 57(3) (1988), 795-818. https://doi.org/10.1215/S0012-7094-88-05735-3
- S. Fukushima, Y.-G. Ji, and H. Kang, A decomposition theorem of surface vector fields and spectral structure of the Neumann-Poincare operator in elasticity, arXiv:2211.15879.
- N.I. Muskhelishvili, Singular integral equations. Boundary problems of function theory and their application to mathematical physics, Translated from the second (1946) Russian edition and with a preface by J. R. M. Radok, Noordhoff International Publishing-Leyden, 1977.
- A.P. Calderon, Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sc. USA, 74 (1977), 1324-1327. https://doi.org/10.1073/pnas.74.4.1324
- L. Escauriaza, E. B. Fabes, and G. Verchota, On a regularity theorem for weak solutions to transmission problems with internal Lipchitz boundaries, Proc. Amer. Math. Soc. 115 (4) (1992), 1069-1076. https://doi.org/10.1090/S0002-9939-1992-1092919-1
- G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal, 59(3) (1984), 572-611. https://doi.org/10.1016/0022-1236(84)90066-1
- K. Ando, H. Kang and Y. Miyanishi, Elastic Neumann-Poincare operators on three dimensional smooth domains: Polynomial compactness and spectral structure, Int. Math. Res. Notices, 12 (2019), 3883-3900. https://doi.org/10.1093/imrn/rnx258
- K. Ando, H. Kang and Y. Miyanishi, Convergence rate for eigenvalues of the elastic Neumann-Poincare operator on smooth and real analytic boundaries in two dimensions, Jour. Math. Pures Appl, 140 (2020), 211-229. https://doi.org/10.1016/j.matpur.2020.06.008
- G. Rozenblum, The Discrete Spectrum of the Neumann-poincare Operator in 3D Elasticity, J. Pseudo-Differ. Oper. Appl. 14 (2023), article number 26. https://doi.org/10.1007/s11868-023-00520-y.