과제정보
본 연구는 네이버 커넥트재단 지원 및 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2021R1G1A1094019).
참고문헌
- 권영옥. (2013). 빅데이터를 활용한 맞춤형 교육 서비스 활성화 방안연구. 지능정보연구, 19(2), 87-100. https://doi.org/10.13088/JIIS.2013.19.2.087
- 정준희. (2012). 통계적 접근법을 기초로 하는 지능형 교육 지원 시스템. 지능정보연구, 18(1), 109-123. https://doi.org/10.13088/JIIS.2012.18.1.109
- 강영식, 정진우, 심선영. (2023). RPA 로그 마이닝 기반 프로세스 자동화 현황 분석 - 중소기업 대상 실증 연구. 지능정보연구, 29(1), 265-288. https://doi.org/10.13088/JIIS.2023.29.1.265
- 김혜경, 배성아. (2019). Felder-Silverman 학습양식에 따른 영어 튜터링 프로그램의 튜터와 튜티의 학습성취도와 만족도 간의 관계 연구. 교양교육연구, 3(2), 115-140.
- 손세창, 윤한영. (2022). 포스트 코로나19 시대 공항의 디지털 트랜스포메이션을 통한 공항 운영에서 혁신적 비즈니스 모델 적용 연구. 한국산학기술학회논문지, 23(4), 483-492.
- 허묘연. (2020). 언택트 교육의 시대: 온라인 교육을 위한 준비. 차세대컨버전스정보서비스기술논문지, 9(3), 315-325.
- Lockyer, L., Heathcote, E., & Dawson, S. (2013). Informing pedagogical action: Aligning learning analytics with learning design. American Behavioral Scientist, 57(10), 1439-1459. https://doi.org/10.1177/0002764213479367
- Graf, S., Viola, S.R. & Leo, T. (2007). In-Depth Analysis of the Felder-Silverman Learning Style Dimensions Journal of Research on Technology in Education, 40(1), 79-93. https://doi.org/10.1080/15391523.2007.10782498
- Bogarin, A., Cerezo, R. & Romero, C. (2017) A survey on educational process mining WIREs Data Mining and Knowledge Discovery, 8(1). https://doi.org/10.1002/widm.1230
- Siemens, G. (2013). Learning Analytics: The Emergence of a Discipline American Behavioral Scientist, 57(10), 1380-1400 https://doi.org/10.1177/0002764213498851
- Gasevic, D., Dawson, S., Rogers, T. & Gasevic, D. (2016). Learning analytics should not promote one size fits all: The effects of instructional conditions in predicting academic success Internet and Higher Education, 68-84. https://doi.org/10.1016/j.iheduc.2015.10.002
- Mukala, P., Buijs, J., Leemans, M. & Van Der Aalst, W. (2015). Exploring Students' Learning Behaviour in MOOCs Using Process Mining. BPM Reports,1510, Eindhoven University of Technology, Eindhoven, The Netherlands. https://research.tue.nl/nl/publications/exploring-students-learning-behaviour-in-moocs-using-process-mini
- Hachicha, W., Ghorbel, L., Champagnat, R., Zayani, C.A. & Amous, I. (2021). Using Process Mining for Learning Resource Recommendation: A Moodle Case Study. Procedia Computer Science, 853-862. https://doi.org/10.1016/j.procs.2021.08.088
- Schoor, C. & Bannert, M. (2012). Exploring regulatory processes during a computer-supported collaborative learning task using process mining Computers in Human Behavior, 1321-1331. https://doi.org/10.1016/j.chb.2012.02.016
- Juhanak, L., Zounek, J. & Rohlikova, L. (2019). Using process mining to analyze students' quiz-taking behavior patterns in a learning management system Computers in Human Behavior, 496-506. https://doi.org/10.1016/j.chb.2017.12.015
- Van Der Aalst, W. (2016). Process mining: data science in action (Vol. 2). Heidelberg: Springer.
- Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Maggi, F. M., Marrella, A., ... & Soo, A. (2018). Automated discovery of process models from event logs: review and benchmark. IEEE transactions on knowledge and data engineering, 31(4), 686-705. https://doi.org/10.1109/TKDE.2018.2841877
- Cho, M., Song, M., Comuzzi, M., & Yoo, S. (2017). Evaluating the effect of best practices for business process redesign: An evidence-based approach based on process mining techniques. Decision Support Systems, 104, 92-103. https://doi.org/10.1016/j.dss.2017.10.004
- Cardoso, J., Mendling, J., Neumann, G., & Reijers, H. A. (2006, September). A discourse on complexity of process models. In Business process management workshops (Vol. 4103, pp. 117-128).
- McCoy, C. & Shih P. C. (2016). Teachers as Producers of Data Analytics: A Case Study of a Teacher Focused Educational Data Science Program, Journal of Learning Analytics, 3(3), 193-214. https://doi.org/10.18608/jla.2016.33.10
- Black, E. W., Dawson, K., & Priem, J. (2008). Data for free: Using LMS activity logs to measure community in online courses. The Internet and Higher Education, 11(2), 65-70. https://doi.org/10.1016/j.iheduc.2008.03.002
- Muslim, A., Chatti, M. A., & Guesmi, M. (2020). Open learning analytics: a systematic literature review and future perspectives. Artificial Intelligence Supported Educational Technologies, 3-29.
- Wang, Y., Mu, C., Li, X., & Yang, Y. (2019, August). An Applied Research on Big Data Analysis and Mining Technology in Education. In 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC) (pp. 116-120). IEEE.
- Chen, L., Lu, M., Goda, Y., & Yamada, M. (2019). Design of Learning Analytics Dashboard Supporting Metacognition. International Association for Development of the Information Society.
- Fleur, D. S., van den Bos, W., & Bredeweg, B. (2020). Learning analytics dashboard for motivation and performance. In Intelligent Tutoring Systems: 16th International Conference, ITS 2020, Athens, Greece, June 8-12, 2020, Proceedings 16 (pp. 411-419). Springer International Publishing.
- Baneres, D., Rodriguez-Gonzalez, M. E., & Serra, M. (2019). An early feedback prediction system for learners at-risk within a first-year higher education course. IEEE Transactions on Learning Technologies, 12(2), 249-263. https://doi.org/10.1109/TLT.2019.2912167
- Han, J., Kim, K. H., Rhee, W., & Cho, Y. H. (2021). Learning analytics dashboards for adaptive support in face-to-face collaborative argumentation. Computers & Education, 163, 104041.
- Kokoc, M., & Altun, A. (2021). Effects of learner interaction with learning dashboards on academic performance in an e-learning environment. Behaviour & Information Technology, 40(2), 161-175. https://doi.org/10.1080/0144929X.2019.1680731
- Khalil, M., & Ebner, M. (2017). Clustering patterns of engagement in Massive Open Online Courses (MOOCs): the use of learning analytics to reveal student categories. Journal of computing in higher education, 29, 114-132. https://doi.org/10.1007/s12528-016-9126-9
- Viberg, O., Hatakka, M., Balter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in human behavior, 89, 98-110. https://doi.org/10.1016/j.chb.2018.07.027
- Trcka, N., & Pechenizkiy, M. (2009, November). From local patterns to global models: Towards domain driven educational process mining. In 2009 Ninth international conference on intelligent systems design and applications (pp. 1114-1119). IEEE.
- Bannert, M., Reimann, P., & Sonnenberg, C. (2014). Process mining techniques for analysing patterns and strategies in students' self-regulated learning. Metacognition and learning, 9, 161-185. https://doi.org/10.1007/s11409-013-9107-6
- Cairns, A. H., Gueni, B., Fhima, M., Cairns, A., David, S., & Khelifa, N. (2014, July). Towards custom-designed professional training contents and curriculums through educational process mining. In The fourth international conference on advances in information mining and management (pp. 53-58).