DOI QR코드

DOI QR Code

Experimental tensile test and micro-mechanic investigation on carbon nanotube reinforced carbon fiber composite beams

  • Emrah Madenci (Department of Civil Engineering, Necmettin Erbakan University) ;
  • Yasin Onuralp Ozkilic (Department of Civil Engineering, Necmettin Erbakan University) ;
  • Ahmad Hakamy (Department of Physics, Faculty of Applied Science, Umm Al-Qura University) ;
  • Abdelouahed Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2021.11.19
  • Accepted : 2022.11.11
  • Published : 2023.05.25

Abstract

Carbon nanotubes (CNTs) have received increased interest in reinforcing research for polymer matrix composites due to their exceptional mechanical characteristics. Its high surface area/volume ratio and aspect ratio enable polymer-based composites to make the most of its features. This study focuses on the experimental tensile testing and fabrication of carbon nanotube reinforced composite (CNTRC) beams, exploring various micromechanical models. By examining the performance of these models alongside experimental results, the research aims to better understand and optimize the mechanical properties of CNTRC materials. Tensile properties of neat epoxy and 0.3%; 0.4% and 0.5% by CNT reinforced laminated single layer (0°/90°) carbon fiber composite beams were investigated. The composite plates were produced in accordance with ASTM D7264 standard. The tensile test was performed in order to see the mechanical properties of the composite beams. The results showed that the optimum amount of CNT was 0.3% based on the tensile capacity. The capacity was significantly reduced when 0.4% CNT was utilized. Moreover, the experimental results are compared with Finite Element Models using ABAQUS. Hashin Failure Criteria was utilized to predict the tensile capacity. Good conformance was observed between experimental and numerical models. More importantly is that Young' Moduli of the specimens is compared with the prediction Halpin-Tsai and Mixture-Rule. Although Halpin-Tsai can accurately predict the Young's Moduli of the specimens, the accuracy of Mixture-Rule was significantly low.

Keywords

Acknowledgement

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (23UQU4250045DSR002).

References

  1. Ahmad, M.N., Nadeem, S., Javed, M., Iqbal, S., Hassan, S.U., Aljazzar, S.O., Elkaeed, E.B., Pashameah, R.A., Alzahrani. E., Farouk, A.E., Alotaibi. M.T. and Abd-Rabboh, H.S. (2022a), "Improving the thermal behavior and flame-retardant properties of poly (o-anisidine)/MMT nanocomposites incorporated with poly (o-anisidine) and clay nanofiller", Molecules, 27(17), 5477. https://doi.org/10.3390/molecules27175477.
  2. Ahmad, S., Ullah, H., Rehman, Z.U., Nawaz, M., Uddin, I., Parkash, A., Alamri, H.R., Alsaiari, N.S. and Javed, M.S. (2022b), "Investigation on crystal-structure, thermal and electrical properties of PVDF nanocomposites with cobalt oxide and functionalized multi-wall-carbon-nanotubes", Nanomaterials, 12(16), 2796. https://doi.org/10.3390/nano12162796.
  3. Ahmad, M.N., Nadeem, S., Soltane, R., Javed, M., Iqbal, S., Kanwal, Z., Farid, M.F., Rabea, S., Elkaeed, E.B., Aljazzar, S.O., Alrbyawi, H. and Elkhatib, W.F. (2022c), "Synthesis, characterization, and antibacterial potential of poly (o-anisidine)/BaSO4 nanocomposites with enhanced electrical conductivity", Processes, 10(9), 1878. https://doi.org/10.3390/pr10091878.
  4. Aksoylu, C., Ozkilic, Y.O., Madenci, E. and Safonov, A. (2022a), "Compressive behavior of pultruded GFRP boxes with concentric openings strengthened by different composite wrappings", Polymers, 14(19), 4095. https://doi.org/10.3390/polym14194095.
  5. Aksoylu, C., Ozkilic, Y.O. and Arslan, M.H. (2022b), "Mechanical steel stitches: An innovative approach for strengthening shear deficiency in undamaged reinforced concrete beams", Buildings, 12(10), 1501.
  6. Allehyani, E.S., Almulaiky, Y.Q., Al-Harbi, S.A. and El-Shishtawy, R.M. (2022), "In situ coating of polydopamine-AgNPs on polyester fabrics producing antibacterial and antioxidant properties", Polymers, 14(18), 3794. https://doi.org/10.3390/polym14183794.
  7. Al-Muntaser, A.A., Pashameah, R.A., Sharma, K., Alzahrani, E. and Tarabiah, A.E. (2022), "Reinforcement of structural, optical, electrical, and dielectric characteristics of CMC/PVA based on GNP/ZnO hybrid nanofiller: Nanocomposites materials for energy-storage applications", Int. J. Energy Res., 46(15), 23984-23995. https://doi.org/10.1002/er.8695.
  8. Arslan, M.H., Yazman, S., Hamad, A.A., Aksoylu, C., Ozkilic, Y.O. and Gemi, L. (2022, May), "Shear strengthening of reinforced concrete T-beams with anchored and non-anchored CFRP fabrics", Structures, 39, 527-542. https://doi.org/10.1016/j.istruc.2022.03.046.
  9. Ali, Z., Khadimallah, M.A., Hussain, M., Asghar, S., Al-Thobiani, F., Elbahar, M., Elimame, E. and Tounsi, A. (2021), "Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs", Adv. Nano Res., 11(2), 183-192. https://doi.org/10.12989/anr.2021.11.2.183\
  10. Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concr., 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
  11. Asyraf, M.R.M., Rafidah, M., Madenci, E., Ozkilic, Y.O., Aksoylu, C., Razman, M.R., ... & Khan, T. (2023), "Creep properties and analysis of cross arms' materials and structures in latticed transmission towers: Current progress and future perspectives", Materials, 16(4), 1747. https://doi.org/10.3390/ma16041747.
  12. Bandaru, A.K., Patel, S., Sachan, Y., Ahmad, S., Alagirusamy, R. and Bhatnagar, N. (2016), "Mechanical behavior of Kevlar/basalt reinforced polypropylene composites", Compos. Part A Appl., 90, 642-652. https://doi.org/10.1016/j.compositesa.2016.08.03.
  13. Biercuk, M., Llaguno, M.C., Radosavljevic, M., Hyun, J., Johnson, A.T. and Fischer, J.E. (2002), "Carbon nanotube composites for thermal management", Appl. Phys. Lett., 80(15), 2767-2769. https://doi.org/10.1063/1.1469696
  14. Chavan, S.G. and Lal, A. (2017), "Bending behavior of SWCNT reinforced composite plates", Steel Compos. Struct. 24(5), 537-548. https://doi.org/10.12989/scs.2017.24.5.537
  15. Farazin, A. and Mohammadimehr, M. (2020), "Nano research for investigating the effect of SWCNTs dimensions on the properties of the simulated nanocomposites: A molecular dynamics simulation", Adv. Nano Res., 9(2), 83-90. https://doi.org/10.12989/anr.2020.9.2.083.
  16. Gemi, L., Madenci, E. and Ozkilic, Y.O. (2021), "Experimental, analytical and numerical investigation of pultruded GFRP composite beams infilled with hybrid FRP reinforced concrete", Eng. Struct., 244, 112790. https://doi.org/10.1016/j.engstruct.2021.112790.
  17. Gemi, L., Madenci, E., Ozkilic, Y.O., Yazman, S. and Safonov, A. (2022a), "Effect of fiber wrapping on bending behavior of reinforced concrete filled pultruded GFRP composite hybrid beams", Polymers, 14(18), 3740. https://doi.org/10.3390/polym14183740.
  18. Gemi, L., Alsdudi, M., Aksoylu, C., Yazman, S., Ozkilic, Y.O. and Arslan, M.H. (2022b), "Optimum amount of CFRP for strengthening shear deficient reinforced concrete beams", Steel Compos. Struct., 43(6), 735-757. https://doi.org/10.12989/scs.2022.43.6.735.
  19. Gojny, F.H., Wichmann, M.H.G., Fiedler, B. and Schulte, K. (2005), "Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites - A comparative study", Compos. Sci. Technol., 65(15), 2300-2313. https://doi.org/10.1016/j.compscitech.2005.04.021.
  20. Hashin, Z. (1980), "Failure criteria for unidirectional fiber composites", J. Appl. Mech., 47(2), 329-334. https://doi.org/10.1115/1.3153664
  21. Hashin, Z. and Rotem, A. (1973), "A fatigue failure criterion for fiber reinforced materials", J. Compos. Mater., 7(4), 448-464. https://doi.org/10.1177/002199837300700404
  22. Heidari, F., Afsari, A. and Janghorban, M. (2020), "Several models for bending and buckling behaviors of FG-CNTRCs with piezoelectric layers including size effects", Adv. Nano Res., 9(3), 193-210. https://doi.org/10.12989/anr.2020.9.3.193.
  23. Iijima, S. and Ichihashi, T. (1993), "Single-shell carbon nanotubes of 1-nm diameter", Nature. 363(6430), 603-605. https://doi.org/10.1038/363603a0
  24. Lei, Z. and Zhang, Y. (2018), "Characterizing buckling behavior of matrix-cracked hybrid plates containing CNTR-FG layers", Steel Compos. Struct., 28(4), 495-508. https://doi.org/10.12989/scs.2018.28.4.495.
  25. Madenci, E. (2021), "Free vibration analysis of carbon nanotube RC nanobeams with variational approaches", Adv. Nano Res., 11(2), 157-171. https://doi.org/10.12989/anr.2021.11.2.157.
  26. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. https://doi.org/10.1016/j.compstruct.2020.112162.
  27. Madenci, E. and O zutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
  28. Madenci, E., Fayed, S., Mansour, W. and Ozkilic, Y. O. (2022a), "Buckling performance of pultruded glass fiber reinforced polymer profiles infilled with waste steel fiber reinforced concrete under axial compression", Steel Compos. Struct., 45(5), 653-663. https://doi.org/10.12989/scs.2022.45.6.653
  29. Madenci, E., Ozkilic, Y.O., Aksoylu, C. and Safonov, A. (2022b), "The effects of eccentric web openings on the compressive performance of pultruded GFRP boxes wrapped with GFRP and CFRP sheets", Polymers, 14(21), 4567. https://doi.org/10.3390/polym14214567.
  30. Madenci, E., Ozkilic, Y.O., Aksoylu, C., Asyraf, M.R.M., Syamsir, A., Supian, A.B.M. and Elizaveta, B. (2023a), "Experimental and analytical investigation of flexural behavior of carbon nanotube reinforced textile based composites", Materials, 16(6), 2222. https://doi.org/10.3390/ma16062222.
  31. Madenci, E., Ozkilic, Y.O., Aksoylu, C., Asyraf, M.R.M., Syamsir, A., Supian, A.B.M. and Mamaev, N. (2023b), "Buckling analysis of CNT-reinforced polymer composite beam using experimental and analytical methods", Materials, 16(2), 614. https://doi.org/10.3390/ma16020614.
  32. Marani, R. and Perri, A.G. (2017), "An approach to model the temperature effects on IV characteristics of CNTFETs", Adv. Nano Res., 5(1), 61-67. https://doi.org/10.12989/anr.2017.5.1.061.
  33. Ozkilic, Y.O., Aksoylu, C., Gemi, L. and Arslan, M.H. (2022), "Behavior of CFRP-strengthened RC beams with circular web openings in shear zones: Numerical study", Structures, 41, 1369-1389. https://doi.org/10.1016/j.istruc.2022.05.061.
  34. Ozutok, A., Madenci, E. and Kadioglu, F. (2014), "Free vibration analysis of angle-ply laminate composite beams by mixed finite element formulation using the Gateaux differential", Sci. Eng. Compos. Mater., 21(2), 257-266. https://doi.org/10.1515/secm-2013-0043.
  35. O zutok, A. and Madenci, E. (2013), "Free vibration analysis of cross-ply laminated composite beams by mixed finite element formulation", Int. J. Struct. Stabil. Dyn., 13(2), 1250056. https://doi.org/10.1142/S0219455412500563.
  36. O zutok, A. and Madenci, E. (2017), "Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method", Int. J. Mech. Sci., 130, 234-243. https://doi.org/10.1016/j.ijmecsci.2017.06.013.
  37. Petrone, G. and Meruane, V. (2017), "Mechanical properties updating of a non-uniform natural fibre composite panel by means of a parallel genetic algorithm", Compos. Part A Appl., 94, 226-233. https://doi.org/10.1016/j.compositesa.2016.12.017.
  38. Qin, B., Zhong, R., Wang, T., Wang, Q., Xu, Y. and Hu, Z. (2020), "A unified Fourier series solution for vibration analysis of FGCNTRC cylindrical, conical shells and annular plates with arbitrary boundary conditions", Compos. Struct., 232, 111549. https://doi.org/10.1016/j.compstruct.2019.111549.
  39. Rahman, M.M., Zainuddin, S., Hosur, M.V., Malone, J.E., Salam, M.B.A., Kumar, A. and Jeelani, S. (2012), "Improvements in mechanical and thermo-mechanical properties of e-glass/epoxy composites using amino functionalized MWCNTs", Compos. Struct., 94(8), 2397-2406. https://doi.org/10.1016/j.compstruct.2012.03.014.
  40. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates And Shells: Theory and Analysis, CRC press.
  41. Shen, H.S., Li, C. and Reddy, J.N. (2020), "Large amplitude vibration of FG-CNTRC laminated cylindrical shells with negative Poisson's ratio", Comput. Meth. Appl. Mech. Eng., 360, 112727. https://doi.org/10.1016/j.cma.2019.112727.
  42. Siddiqui, N.A., Sham, M.L., Tang, B.Z., Munir, A. and Kim, J.K. (2009), "Tensile strength of glass fibres with carbon nanotube-epoxy nanocomposite coating", Compos. Part A Appl., 40(10), 1606-1614. https://doi.org/10.1016/j.compositesa.2009.07.005.
  43. Syamsir, A., Ean, L.W., Asyraf, M.R.M., Supian, A.B.M., Madenci, E., Ozkilic, Y.O. and Aksoylu, C. (2023), "Recent advances of GFRP composite cross arms in energy transmission tower: A short review on design improvements and mechanical properties", Materials, 16(7), 2778. https://doi.org/10.3390/ma16072778.
  44. Taraghi, I., Fereidoon, A. and Mohyeddin, A. (2014), "The effect of MWCNTs on the mechanical properties of woven Kevlar/epoxy composites", Steel Compos. Struct., 17(6), 825-834. https://doi.org/10.12989/scs.2014.17.6.825.
  45. Valenca, S.L., Griza, S., de Oliveira, V.G., Sussuchi, E.M. and de Cunha, F.G.C. (2015), "Evaluation of the mechanical behavior of epoxy composite reinforced with Kevlar plain fabric and glass/Kevlar hybrid fabric", Compos. Part B Eng., 70, 1-8. https://doi.org/10.1016/j.compositesb.2014.09.040.
  46. Vedernikov, A., Safonov, A., Tucci, F., Carlone, P. and Akhatov, I. (2020), "Pultruded materials and structures: A review", J. Compos. Mater., 54(26), 4081-4117. https://doi.org/10.1177/0021998320922894.
  47. Vedernikov, A., Gemi, L., Madenci, E., Ozkilic, Y. O., Yazman, S., Gusev, S., Sulimov, A, Bondareva, J., Evlashin, S., Konev, S., Akhatov, I. and Safonov, A. (2022), "Effects of high pulling speeds on mechanical properties and morphology of pultruded GFRP composite flat laminates", Compos. Struct., 301, 116216. https://doi.org/10.1016/j.compstruct.2022.116216.
  48. Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., 6(2), 163. https://doi.org/10.12989/anr.2018.6.2.163.
  49. Zou, Y., Feng, Y., Wang, L. and Liu, X. (2004), "Processing and properties of MWNT/HDPE composites", Carbon, 42(2), 271-277. https://doi.org/10.1016/j.carbon.2003.10.028.