DOI QR코드

DOI QR Code

A review of the characteristics related to the platform design, transportation and installation of floating offshore wind turbine systems with a tension-leg platform

인장각형 부유식 해상풍력발전시스템의 하부 플랫폼 설계 및 운송·설치 관련 특성 고찰

  • Hyeonjeong Ahn ;
  • Yoon-Jin Ha ;
  • Ji-Yong Park ;
  • Kyong-Hwan Kim
  • 안현정 (선박해양플랜트연구소, 친환경해양개발연구본부) ;
  • 하윤진 (선박해양플랜트연구소, 친환경해양개발연구본부) ;
  • 박지용 (선박해양플랜트연구소, 친환경해양개발연구본부) ;
  • 김경환 (선박해양플랜트연구소, 친환경해양개발연구본부)
  • Received : 2023.08.30
  • Accepted : 2023.11.07
  • Published : 2023.12.31

Abstract

In this study, research and empirical cases of floating offshore wind turbine systems with a tension-leg platform are investigated, and hydrodynamic and structural characteristics according to platform shapes and characteristics during transportation and installation are confirmed. Most platforms are composed of pontoons or corner columns, and these are mainly located below the waterline to minimize the impact of breaking waves and supplement the lack of buoyancy of the center column. These pontoons and corner columns are designed with a simple shape to reduce manufacturing and assembly costs, and some platforms additionally have reinforcements such as braces to improve structural strength. Most of the systems are assembled in the yard and then moved by tugboat and installed, and some platforms have been developed with a dedicated barge for simultaneous assembly, transportation and installation. In this study, we intend to secure the basic data necessary for the design, transportation, and installation procedures of floating offshore wind turbine systems with a tension-leg platform.

Keywords

Acknowledgement

본 연구는 2023년도 산업통상자원부의 재원으로 한국에너지기술평가원의 "인장각형(TLP)방식 부유식 해상풍력발전시스템 설계 및 축소모형시험 기술 개발" 사업의 지원을 받아 수행한 연구 과제입니다. (과제번호 : 20223030020130, PNS4640)

References

  1. Butterfield, S., Musial, W., Jonkman, J., & Sclavounos, P. (2007). Engineering challenges for floating offshore wind turbines (No. NREL/CP-500-38776). National Renewable Energy Lab.(NREL), Golden, CO (United States).
  2. Chakrabarti, S. (2005). Handbook of Offshore Engineering (2-volume set). Elsevier.
  3. Adrezin, R., & Benaroya, H. (1999). Non-linear stochastic dynamics of tension leg platforms. Journal of Sound and vibration, 220(1), 27-65.
  4. Low, Y. M. (2010). Influence of the setdown of a tension leg platform on the extreme airgap response. Applied Ocean Research, 32(1), 11-19.
  5. Vryhof Anchors, B. V. (2010). Anchor Manual 2010: The Guide to Anchoring. AC Capelle a/d Yssel.
  6. Available online: https://www.ewea.org/offshore2015/conference/allposters/PO028.pdf, accessed on date August 18, 2023
  7. Amate, J., Sanchez, G. D., & Gonzalez, G. (2016, September). Development of a Semi-submersible Barge for the installation of a TLP floating substructure. TLPWIND® case study. In Journal of Physics: Conference Series (Vol. 749, No. 1, p. 012016). IOP Publishing.
  8. Available online: https://www.energyportzeeland.nl/data/formulieren/uploads/171128%20introduction%20blue%20h%20engineering.pdf, accessed on date August 18, 2023
  9. Available online: https://www.bluehengineering.com/, accessed on date August 18, 2023
  10. Available online: http://www.oceanresource.co.uk/Ocean-Breeze.html, accessed on date August 18, 2023
  11. Available online: http://www.wavetidalenergynetwork.co.uk/wp-content/uploads/2013/04/Ocean-Breeze.pdf, accessed on date August 18, 2023
  12. Adam, F., Myland, T., Dahlhaus, F., & Grossmann, J. (2014, November). Gicon®-TLP for wind turbines-the path of development. In The 1st International Conference on Renewable Energies Offshore (RENEW) (pp. 24-26).
  13. Adam, F., Ritschel, U., Dahlhaus, F., & Grossmann, J. (2016, September). Development of an economical and insured TLP substructure for a 6MW wind turbine-use of steel-concrete composite material. In Int. Conf. on Offshore Renewable Energy-CORE.
  14. Ramachandran, C. R., Desmond, C., Judge, F., Serraris, J. J., & Murphy, J. (2021). Floating offshore wind turbines: Installation, operation, maintenance and decommissioning challenges and opportunities. Wind. Energy Sci. Discuss, 2021, 15.
  15. Suzuki, K., Yamaguchi, H., Akase, M., Imakita, A., Ishihara, T., Fukumoto, Y., & Oyama, T. (2011). Initial design of tension leg platform for offshore wind farm. Journal of Fluid Science and Technology, 6(3), 372-381.
  16. Available online: https://www.sbmoffshore.com/sites/sbm-offshore/files/documents/2022/Float4Wind%20Brochure_SBM%20Offshore_March%202022.pdf, accessed on date August 18, 2023
  17. Available online: https://www.sbmoffshore.com/newsroom/news-events/sbm-offshore-launches-float4windtm, accessed on date August 18, 2023
  18. Bachynski, E. E., & Moan, T. (2012). Design considerations for tension leg platform wind turbines. Marine Structures, 29(1), 89-114.
  19. Matha, D. (2010). Model development and loads analysis of an offshore wind turbine on a tension leg platform with a comparison to other floating turbine concepts: April 2009 (No. NREL/SR-500-45891). National Renewable Energy Lab.(NREL), Golden, CO (United States).
  20. Vita, L., Ramachandran, G. K. V., Krieger, A., Kvittem, M. I., Merino, D., Cross-Whiter, J., & Ackers, B. B., 2015, Comparison of numerical models and verification against experimental data, using Pelastar TLP concept. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 56574, p. V009T09A047). American Society of Mechanical Engineers.
  21. Available online: https://glosten.com/project/pelastar/,accessed on date August 18, 2023
  22. Available online: http://pelastar.com/wp-content/uploads/2018/12/PelaStar-Brochure.pdf, accessed on date August 18, 2023