Acknowledgement
This work was supported by a National Research Foundation of Korea (NRF) grant (2021R1F1A1064344) and by the Korea Environment Industry & Technology Institute (KEITI) through "the Technology Development Project for Safety Management of Household Chemical Products," funded by the Korea Ministry of Environment (MOE) (RS-2023-00215856).
References
- Ali, F. and Sultana, S. (2012) Repeated short-term stress synergizes the ROS signalling through up regulation of NFkB and iNOS expression induced due to combined exposure of trichloroethylene and UVB rays. Mol. Cell. Biochem. 360, 133-145. https://doi.org/10.1007/s11010-011-1051-7
- Aquino, M. and Rosner, G. (2019) Systemic contact dermatitis. Clin. Rev. Allergy Immunol. 56, 9-18. https://doi.org/10.1007/s12016-018-8686-z
- Bago, A., Cayuela, M. L., Gil, A., Calvo, E., Vazquez, J., Queiro, A., Schopfer, F. J., Radi, R., Serrador, J. M. and Iniguez, M. A. (2023) Nitro-oleic acid regulates T cell activation through post-translational modification of calcineurin. Proc. Natl. Acad. Sci. U. S. A. 120, e2208924120.
- Bath, P. M., Coleman, C. M., Gordon, A. L., Lim, W. S. and Webb, A. J. (2021) Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Res. 10, 536.
- Bogdan, C. (2015) Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol. 36, 161-178. https://doi.org/10.1016/j.it.2015.01.003
- Cals-Grierson, M. M. and Ormerod, A. D. (2004) Nitric oxide function in the skin. Nitric Oxide 10, 179-193. https://doi.org/10.1016/j.niox.2004.04.005
- Carlstrom, M., Lundberg, J. O. and Weitzberg, E. (2018) Mechanisms underlying blood pressure reduction by dietary inorganic nitrate. Acta Physiol. (Oxf.) 224, e13080.
- Chen, Z., Haus, J. M., Chen, L., Wu, S. C., Urao, N., Koh, T. J. and Minshall, R. D. (2020) CCL28-induced CCR10/eNOS interaction in angiogenesis and skin wound healing. FASEB J. 34, 5838-5850. https://doi.org/10.1096/fj.201902060R
- Choi, M. S., Nakamura, T., Cho, S. J., Han, X., Holland, E. A., Qu, J., Petsko, G. A., Yates, J. R., Liddington, R. C. and Lipton, S. A. (2014) Transnitrosylation from DJ-1 to PTEN attenuates neuronal cell death in parkinson's disease models. J. Neurosci. 34, 15123-15131. https://doi.org/10.1523/JNEUROSCI.4751-13.2014
- Cinelli, M. A., Do, H. T., Miley, G. P. and Silverman, R. B. (2020) Inducible nitric oxide synthase: regulation, structure, and inhibition. Med. Res. Rev. 40, 158-189. https://doi.org/10.1002/med.21599
- Contestabile, A. (2012) Role of nitric oxide in cerebellar development and function: focus on granule neurons. Cerebellum 11, 50-61. https://doi.org/10.1007/s12311-010-0234-1
- Cripps, J. G., Wang, J., Maria, A., Blumenthal, I. and Gorham, J. D. (2010) Type 1 T helper cells induce the accumulation of myeloidderived suppressor cells in the inflamed Tgfb1 knockout mouse liver. Hepatology 52, 1350-1359. https://doi.org/10.1002/hep.23841
- Cyr, A. R., Huckaby, L. V., Shiva, S. S. and Zuckerbraun, B. S. (2020) Nitric oxide and endothelial dysfunction. Crit. Care Clin. 36, 307-321. https://doi.org/10.1016/j.ccc.2019.12.009
- Degjoni, A., Campolo, F., Stefanini, L. and Venneri, M. A. (2022) The NO/cGMP/PKG pathway in platelets: the therapeutic potential of PDE5 inhibitors in platelet disorders. J. Thromb. Haemost. 20, 2465-2474. https://doi.org/10.1111/jth.15844
- Dugas, N., Dereuddre-Bosquet, N., Goujard, C., Dormont, D., Tardieu, M. and Delfraissy, J. F. (2000) Role of nitric oxide in the promoting effect of HIV type 1 infection and of gp120 envelope glycoprotein on interleukin 4-induced IgE production by normal human mononuclear cells. AIDS Res. Hum. Retroviruses 16, 251-258. https://doi.org/10.1089/088922200309340
- Fitzgerald, K. A. and Kagan, J. C. (2020) Toll-like receptors and the control of immunity. Cell 180, 1044-1066. https://doi.org/10.1016/j.cell.2020.02.041
- Ford, P. C. and Miranda, K. M. (2020) The solution chemistry of nitric oxide and other reactive nitrogen species. Nitric Oxide 103, 31-46. https://doi.org/10.1016/j.niox.2020.07.004
- Gantner, B. N., LaFond, K. M. and Bonini, M. G. (2020) Nitric oxide in cellular adaptation and disease. Redox Biol. 34, 101550.
- Garcia-Ortiz, A. and Serrador, J. M. (2018) Nitric oxide signaling in T cell-mediated immunity. Trends Mol. Med. 24, 412-427. https://doi.org/10.1016/j.molmed.2018.02.002
- Garthwaite, J. (2019) NO as a multimodal transmitter in the brain: discovery and current status. Br. J. Pharmacol. 176, 197-211. https://doi.org/10.1111/bph.14532
- Giordano, D., Draves, K. E., Li, C., Hohl, T. M. and Clark, E. A. (2014) Nitric oxide regulates BAFF expression and T cell-independent antibody responses. J. Immunol. 193, 1110-1120. https://doi.org/10.4049/jimmunol.1303158
- Guzik, T. J., Korbut, R. and Adamek-Guzik, T. (2003) Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol. 54, 469-487.
- Horikoshi, T., Nakahara, M., Kaminaga, H., Sasaki, M., Uchiwa, H. and Miyachi, Y. (2000) Involvement of nitric oxide in UVB-induced pigmentation in guinea pig skin. Pigment Cell Res. 13, 358-363. https://doi.org/10.1034/j.1600-0749.2000.130509.x
- Hyun, E., Bolla, M., Steinhoff, M., Wallace, J. L., Del Soldato, P. and Vergnolle, N. (2004) Anti-inflammatory effects of nitric oxide-releasing hydrocortisone NCX 1022, in a murine model of contact dermatitis. Br. J. Pharmacol. 143, 618-625. https://doi.org/10.1038/sj.bjp.0705854
- Jayasekera, J. P., Vinuesa, C. G., Karupiah, G. and King, N. J. C. (2006) Enhanced antiviral antibody secretion and attenuated immunopathology during influenza virus infection in nitric oxide synthase-2-deficient mice. J. Gen. Virol. 87, 3361-3371. https://doi.org/10.1099/vir.0.82131-0
- Johansen, J. D., Bonefeld, C. M., Schwensen, J. F. B., Thyssen, J. P. and Uter, W. (2022) Novel insights into contact dermatitis. J. Allergy Clin. Immunol. 149, 1162-1171. https://doi.org/10.1016/j.jaci.2022.02.002
- Jourd'heuil, D., Miranda, K. M., Kim, S. M., Espey, M. G., Vodovotz, Y., Laroux, S., Mai, C. T., Miles, A. M., Grisham, M. B. and Wink, D. A. (1999) The oxidative and nitrosative chemistry of the nitric oxide/superoxide reaction in the presence of bicarbonate. Arch. Biochem. Biophys. 365, 92-100. https://doi.org/10.1006/abbi.1999.1143
- Kashfi, K., Kannikal, J. and Nath, N. (2021) Macrophage reprogramming and cancer therapeutics: role of iNOS-derived NO. Cells 10, 3194.
- Krol, M. and Kepinska, M. (2020) Human nitric oxide synthase-its functions, polymorphisms, and inhibitors in the context of inflammation, diabetes and cardiovascular diseases. Int. J. Mol. Sci. 22, 56.
- Kuypers, M. M. M., Marchant, H. K. and Kartal, B. (2018) The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263-276. https://doi.org/10.1038/nrmicro.2018.9
- Lehners, M., Dobrowinski, H., Feil, S. and Feil, R. (2018) cGMP signaling and vascular smooth muscle cell plasticity. J. Cardiovasc. Dev. Dis. 5, 20.
- Li, Y. and Li, L. (2021) Contact dermatitis: classifications and management. Clin. Rev. Allergy Immunol. 61, 245-281. https://doi.org/10.1007/s12016-021-08875-0
- Lim, S. C. (2013) Interrelation between expression of ADAM 10 and MMP 9 and synthesis of peroxynitrite in doxorubicin induced cardiomyopathy. Biomol. Ther. (Seoul) 21, 371-380. https://doi.org/10.4062/biomolther.2013.034
- Lipton, S. A. (2022) Hidden networks of aberrant protein transnitrosylation contribute to synapse loss in Alzheimer's disease. Free Radic. Biol. Med. 193, 171-176.
- Lundberg, J. O. and Weitzberg, E. (2022) Nitric oxide signaling in health and disease. Cell 185, 2853-2878. https://doi.org/10.1016/j.cell.2022.06.010
- Ma, L., Hu, L., Feng, X. and Wang, S. (2018) Nitrate and nitrite in health and disease. Aging Dis. 9, 938-945. https://doi.org/10.14336/AD.2017.1207
- Mahidhara, R. S., Hoffman, R. A., Huang, S., Wolf-Johnston, A., Vodovotz, Y., Simmons, R. L. and Billiar, T. R. (2003) Nitric oxide-mediated inhibition of caspase-dependent T lymphocyte proliferation. J. Leukoc. Biol. 74, 403-411. https://doi.org/10.1189/jlb.0602293
- Man, M. Q., Wakefield, J. S., Mauro, T. M. and Elias, P. M. (2022a) Regulatory role of nitric oxide in cutaneous inflammation. Inflammation 45, 949-964. https://doi.org/10.1007/s10753-021-01615-8
- Man, M. Q., Wakefield, J. S., Mauro, T. M. and Elias, P. M. (2022b) Role of nitric oxide in regulating epidermal permeability barrier function. Exp. Dermatol. 31, 290-298. https://doi.org/10.1111/exd.14470
- Mathers, A. R., Carey, C. D., Killeen, M. E., Diaz-Perez, J. A., Salvatore, S. R., Schopfer, F. J., Freeman, B. A. and Falo, L. D., Jr. (2017) Electrophilic nitro-fatty acids suppress allergic contact dermatitis in mice. Allergy 72, 656-664. https://doi.org/10.1111/all.13067
- Mehling, R., Schwenck, J., Lemberg, C., Trautwein, C., Zizmare, L., Kramer, D., Muller, A., Fehrenbacher, B., Gonzalez-Menendez, I., Quintanilla-Martinez, L., Schroder, K., Brandes, R. P., Schaller, M., Ruf, W., Eichner, M., Ghoreschi, K., Rocken, M., Pichler, B. J. and Kneilling, M. (2021) Immunomodulatory role of reactive oxygen species and nitrogen species during T cell-driven neutrophil-enriched acute and chronic cutaneous delayed-type hypersensitivity reactions. Theranostics 11, 470-490. https://doi.org/10.7150/thno.51462
- Mehrotra, P., Mishra, K. P., Raman, G. and Banerjee, G. (2005) Differential regulation of free radicals (reactive oxygen and nitrogen species) by contact allergens and irritants in human keratinocyte cell line. Toxicol. Mech. Methods 15, 343-350. https://doi.org/10.1080/15376520500191490
- Nagy, G., Koncz, A. and Perl, A. (2003) T cell activation-induced mitochondrial hyperpolarization is mediated by Ca2+- and redoxdependent production of nitric oxide. J. Immunol. 171, 5188-5197. https://doi.org/10.4049/jimmunol.171.10.5188
- Nakamura, T. and Lipton, S. A. (2020) Nitric oxide-dependent protein post-translational modifications impair mitochondrial function and metabolism to contribute to neurodegenerative diseases. Antioxid. Redox Signal. 32, 817-833. https://doi.org/10.1089/ars.2019.7916
- Nakamura, T. and Lipton, S. A. (2016) Protein S-nitrosylation as a therapeutic target for neurodegenerative diseases. Trends Pharmacol. Sci. 37, 73-84. https://doi.org/10.1016/j.tips.2015.10.002
- Nakamura, T., Oh, C. K., Zhang, X. and Lipton, S. A. (2021) Protein Snitrosylation and oxidation contribute to protein misfolding in neurodegeneration. Free Radic. Biol. Med. 172, 562-577. https://doi.org/10.1016/j.freeradbiomed.2021.07.002
- Nakamura, T., Tu, S., Akhtar, M. W., Sunico, C. R., Okamoto, S. and Lipton, S. A. (2013) Aberrant protein s-nitrosylation in neurodegenerative diseases. Neuron 78, 596-614. https://doi.org/10.1016/j.neuron.2013.05.005
- Namkoong, S. and Kim, Y. M. (2010) Therapeutic application of nitric oxide in human diseases. Biomol. Ther. (Seoul) 18, 351-362. https://doi.org/10.4062/biomolther.2010.18.4.351
- Oates, J. C. (2010) The biology of reactive intermediates in systemic lupus erythematosus. Autoimmunity 43, 56-63. https://doi.org/10.3109/08916930903374683
- Ocampo, D. A. B., Paipilla, A. F., Marin, E., Vargas-Molina, S., Petro, J. L. and Perez-Idarraga, A. (2018) Dietary nitrate from beetroot juice for hypertension: a systematic review. Biomolecules 8, 134.
- Oh, C. K., Dolatabadi, N., Cieplak, P., Diaz-Meco, M. T., Moscat, J., Nolan, J. P., Nakamura, T. and Lipton, S. A. (2022) S-nitrosylation of p62 inhibits autophagic flux to promote α-synuclein secretion and spread in Parkinson's disease and lewy body dementia. J. Neurosci. 42, 3011-3024. https://doi.org/10.1523/JNEUROSCI.1508-21.2022
- Ormerod, A. D., Dwyer, C. M., Reid, A., Copeland, P. and Thompson, W. D. (1997) Inducible nitric oxide synthase demonstrated in allergic and irritant contact dermatitis. Acta Derm. Venereol. 77, 436-440. https://doi.org/10.2340/0001555577436440
- Patel, K. and Nixon, R. (2022) Irritant contact dermatitis - a review. Curr. Dermatol. Rep. 11, 41-51. https://doi.org/10.1007/s13671-021-00351-4
- Piacenza, L., Zeida, A., Trujillo, M. and Radi, R. (2022) The superoxide radical switch in the biology of nitric oxide and peroxynitrite. Physiol. Rev. 102, 1881-1906. https://doi.org/10.1152/physrev.00005.2022
- Plenkowska, J., Gabig-Ciminska, M. and Mozolewski, P. (2020) Oxidative stress as an important contributor to the pathogenesis of psoriasis. Int. J. Mol. Sci. 21, 6206.
- Qian, J. and Fulton, D. J. R. (2012) Exogenous, but not endogenous nitric oxide inhibits adhesion molecule expression in human endothelial cells. Front. Physiol. 3, 3.
- Quillon, A., Fromy, B. and Debret, R. (2015) Endothelium microenvironment sensing leading to nitric oxide mediated vasodilation: a review of nervous and biomechanical signals. Nitric Oxide 45, 20-26. https://doi.org/10.1016/j.niox.2015.01.006
- Qureshi, A. A., Hosoi, J., Xu, S., Takashima, A., Granstein, R. D. and Lerner, E. A. (1996) Langerhans cells express inducible nitric oxide synthase and produce nitric oxide. J. Invest. Dermatol. 107, 815-821. https://doi.org/10.1111/1523-1747.ep12330572
- Ross, R. and Reske-Kunz, A. B. (2001) The role of NO in contact hypersensitivity. Int. Immunopharmacol. 1, 1469-1478. https://doi.org/10.1016/S1567-5769(01)00091-1
- Sadaf, S., Nagarkoti, S., Awasthi, D., Singh, A. K., Srivastava, R. N., Kumar, S., Srivastava, R. N., Kumar, S., Barthwal, M. K. and Dikshit, M. (2021) nNOS induction and NOSIP interaction impact granulopoiesis and neutrophil differentiation by modulating nitric oxide generation. Biochim. Biophys. Acta Mol. Cell Res. 1868, 119018.
- Sahin, S., Onder, M., Sancak, B., Bukan, N. and Gurer, M. A. (2001) The role of nitric oxide in allergic contact dermatitis. Arch. Dermatol. Res. 293, 214-217. https://doi.org/10.1007/s004030100207
- Sakai, M., Shimizu, Y., Nagatsu, I. and Ueda, H. (1996) Immunohistochemical localization of NO synthases in normal human skin and psoriatic skin. Arch. Dermatol. Res. 288, 625-627. https://doi.org/10.1007/BF02505267
- Sammicheli, S., Kuka, M., Di Lucia, P., De Oya, N. J., De Giovanni, M., Fioravanti, J., Cristofani, C., Maganuco, C. G., Fallet, B., Ganzer, L., Sironi, L., Mainetti, M., Ostuni, R., Larimore, K., Greenberg, P. D., de la Torre, J. C., Guidotti, L. G. and Iannacone, M. (2016) Inflammatory monocytes hinder antiviral B cell responses. Sci. Immunol. 1, eaah6789.
- Shen, T., Zhu, Q. X., Yang, S., Ding, R., Ma, T., Ye, L. P., Wang, L. J., Liang, Z. Z. and Zhang, X. J. (2007) Trichloroethylene induce nitric oxide production and nitric oxide synthase mRNA expression in cultured normal human epidermal keratinocytes. Toxicology 239, 186-194. https://doi.org/10.1016/j.tox.2007.07.006
- Shimizu, Y., Sakai, M., Umemura, Y. and Ueda, H. (1997) Immunohistochemical localization of nitric oxide synthase in normal human skin: expression of endothelial-type and inducible-type nitric oxide synthase in keratinocytes. J. Dermatol. 24, 80-87. https://doi.org/10.1111/j.1346-8138.1997.tb02748.x
- Solanki, K., Rajpoot, S., Bezsonov, E. E., Orekhov, A. N., Saluja, R., Wary, A., Axen, C., Wary, K. and Baig, M. S. (2022) The expanding roles of neuronal nitric oxide synthase (NOS1). PeerJ 10, e13651.
- Sowden, H. M., Naseem, K. M. and Tobin, D. J. (2005) Differential expression of nitric oxide synthases in human scalp epidermal and hair follicle pigmentary units: implications for regulation of melanogenesis. Br. J. Dermatol. 153, 301-309. https://doi.org/10.1111/j.1365-2133.2005.06718.x
- Suwanpradid, J., Shih, M., Pontius, L., Yang, B., Birukova, A., Guttman-Yassky, E., Corcoran, D. L., Que, L. G., Tighe, R. M. and MacLeod, A. S. (2017) Arginase1 deficiency in monocytes/macrophages upregulates inducible nitric oxide synthase to promote cutaneous contact hypersensitivity. J. Immunol. 199, 1827-1834. https://doi.org/10.4049/jimmunol.1700739
- Szabo, C., Ischiropoulos, H. and Radi, R. (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 6, 662-680. https://doi.org/10.1038/nrd2222
- Thwe, P. M. and Amiel, E. (2018) The role of nitric oxide in metabolic regulation of Dendritic cell immune function. Cancer Lett. 412, 236-242. https://doi.org/10.1016/j.canlet.2017.10.032
- Vanhatalo, A., Blackwell, J. R., L'Heureux, J. E., Williams, D. W., Smith, A., van der Giezen, M., Winyard, P. G., Kelly, J. and Jones, A. M. (2018) Nitrate-responsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans. Free Radic. Biol. Med. 124, 21-30. https://doi.org/10.1016/j.freeradbiomed.2018.05.078
- Vanhoutte, P. M., Zhao, Y., Xu, A. and Leung, S. W. S. (2016) Thirty years of saying NO: sources, fate, actions, and misfortunes of the endothelium-derived vasodilator mediator. Circ. Res. 119, 375-396. https://doi.org/10.1161/CIRCRESAHA.116.306531
- Wallengren, J. and Larsson, B. (2001) Nitric oxide participates in prick test and irritant patch test reactions in human skin. Arch. Dermatol. Res. 293, 121-125. https://doi.org/10.1007/s004030000198
- Wang, R., Ghahary, A., Shen, Y. J., Scott, P. G. and Tredget, E. E. (1996) Human dermal fibroblasts produce nitric oxide and express both constitutive and inducible nitric oxide synthase isoforms. J. Invest. Dermatol. 106, 419-427. https://doi.org/10.1111/1523-1747.ep12343428
- Xu, T. Y., Qing, S. L., Zhao, J. X., Song, J., Miao, Z. W., Li, J. X., Yang, F. Y., Zhao, H. Y., Zheng, S. L., Li, Z. Y., Wang, S. N. and Miao, C. Y. (2023) Metrnl deficiency retards skin wound healing in mice by inhibiting AKT/eNOS signaling and angiogenesis. Acta Pharmacol. Sin. doi: 10.1038/s41401-023-01090-x [Online ahead of print].
- Xue, Q., Yan, Y., Zhang, R. and Xiong, H. (2018) Regulation of iNOS on immune cells and its role in diseases. Int. J. Mol. Sci. 19, 3805.
- Yu, C., Fitzpatrick, A., Cong, D., Yao, C., Yoo, J., Turnbull, A., Schwarze, J., Norval, M., Howie, S. E. M., Weller, R. B. and Astier, A. L. (2017) Nitric oxide induces human CLA+CD25+Foxp3+ regulatory T cells with skin-homing potential. J. Allergy Clin. Immunol. 140, 1441-1444.e6. https://doi.org/10.1016/j.jaci.2017.05.023
- Yu, L. and Li, L. (2022) Potential biomarkers of atopic dermatitis. Front. Med. (Lausanne) 9, 1028694.
- Zhou, K. and Parker, J. D. (2019) The role of vascular endothelium in nitroglycerin-mediated vasodilation. Br. J. Clin. Pharmacol. 85, 377-384. https://doi.org/10.1111/bcp.13804