DOI QR코드

DOI QR Code

Characterization of L-(+)-Lactic Acid Producing Weizmannia coagulans Strains from Tree Barks and Probiogenomic Evaluation of BKMTCR2-2

  • Jenjuiree Mahittikon (Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University) ;
  • Sitanan Thitiprasert (Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University) ;
  • Sitanan Thitiprasert (Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University) ;
  • Naoto Tanaka (Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture) ;
  • Yuh Shiwa (Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture) ;
  • Nitcha Chamroensaksri (National Biobank of Thailand (NBT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA)) ;
  • Somboon Tanasupawat (Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University)
  • Received : 2023.08.21
  • Accepted : 2023.10.06
  • Published : 2023.12.28

Abstract

This study aimed to isolate and identify L-(+)-lactic acid-producing bacteria from tree barks collected in Thailand and evaluate the potential strain as probiotics. Twelve strains were isolated and characterized phenotypically and genotypically. The strains exhibited a rod-shaped morphology, high-temperature tolerance, and the ability to ferment different sugars into lactic acid. Based on 16S rRNA gene analysis, all strains were identified as belonging to Weizmannia coagulans. Among the isolated strains, BKMTCR2-2 demonstrated exceptional lactic acid production, with 96.41% optical purity, 2.33 g/l of lactic acid production, 1.44 g/g of lactic acid yield (per gram of glucose consumption), and 0.0049 g/l/h of lactic acid productivity. This strain also displayed a wide range of pH tolerance, suggesting suitability for the human gastrointestinal tract and potential probiotic applications. The whole-genome sequence of BKMTCR2-2 was assembled using a hybridization approach that combined long and short reads. The genomic analysis confirmed its identification as W. coagulans and safety assessments revealed its non-pathogenic attribute compared to type strains and commercial probiotic strains. Furthermore, this strain exhibited resilience to acidic and bile conditions, along with the presence of potential probiotic-related genes and metabolic capabilities. These findings suggest that BKMTCR2-2 holds promise as a safe and effective probiotic strain with significant lactic acid production capabilities.

Keywords

Acknowledgement

This research was supported by the Development and Promotion of Science and Technology Talents Project (DPST), Thai government scholarship as a scholarship to Jenjuiree M. (561060), the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University, and the Faculty of Pharmaceutical Sciences, Chulalongkorn University for providing research fund (Grant number Phar2565-RG002) to Dr. Somboon Tanasupawat. The genomic analysis was associated by the Department of Molecular Microbiology, Tokyo University of Agriculture. The authors thank the Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University for providing research facilities; Dr. Engkarat Kingkaew; Dr. Sukanya Phuengjayaem, Dr. Saranporn Poothong and all friends for consistency encouragement to pass through the research project.

References

  1. Sreenadh M, Kumar KR, Nath S. 2022. In vitro evaluation of Weizmannia coagulans strain LMG S-31876 isolated from fermented rice for potential probiotic properties, safety assessment and technological properties. Life 12: 1388.
  2. Higashikawa F, Noda M, Awaya T, Nomura K, Oku H, Sugiyama M. 2010. Improvement of constipation and liver function by plantderived lactic acid bacteria: A double-blind, randomized trial. Nutrition 26: 367-374. https://doi.org/10.1016/j.nut.2009.05.008
  3. Majeed M, Nagabhushanam K, Arumugam S, Majeed S, Ali F. 2018. Bacillus coagulans MTCC 5856 for the management of major depression with irritable bowel syndrome: a randomised, double-blind, placebo controlled, multi-centre, pilot clinical study. Food Nutr. Res. 62. doi: 10.29219/fnr.v62.1218.
  4. Hun L. 2009. Bacillus coagulans significantly improved abdominal pain and bloating in patients with IBS. Postgrad. Med. 121: 119-124. https://doi.org/10.3810/pgm.2009.03.1984
  5. Maity C, Gupta P, Anil Kumar, Saroj DB, Biyani A, Bagkar P, et al. 2021. Impact of a gastrointestinal stable probiotic supplement Bacillus coagulans LBSC on human gut microbiome modulation. J. Diet. Suppl. 18: 577-596. https://doi.org/10.1080/19390211.2020.1814931
  6. Prasirtsak B, Thitiprasert S, Tolieng V, Assabumrungrat S, Tanasupawat S, Thongchul N. 2017. Characterization of D-lactic acid, spore-forming bacteria and Terrilactibacillus laevilacticus SK5-6 as potential industrial strains. Ann. Microbiol. 67: 763-778. https://doi.org/10.1007/s13213-017-1306-y
  7. Thamacharoensuk T, Thongchul N, Taweechotipatr M, Tolieng V, Kodama K, Tanasupawat S. 2013. Screening and characterization of lactic acid bacteria from animal faeces for probiotic properties. Thai J. Vet. Med. 43: 541-551. https://doi.org/10.56808/2985-1130.2520
  8. Tanasupawat S, Thongsanit J, Okada S, Komagata K. 2002. Lactic acid bacteria isolated from soy sauce mash in Thailand. J. Gen. Appl. Microbiol. 48: 201-209. https://doi.org/10.2323/jgam.48.201
  9. Tolieng V. 2018. Characterization of lactic acid producing Bacillus coagulans strains with their antibacterial activity and L-lactic acid production. Thai J. Pharm. Sci. 42: 138-145. https://doi.org/10.56808/3027-7922.2378
  10. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613.
  11. Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38: 3022-3027. https://doi.org/10.1093/molbev/msab120
  12. Tolieng V, Prasirtsak B, Sitdhipol J, Thongchul N, Tanasupawat S. 2017. Identification and lactic acid production of bacteria isolated from soils and tree barks. Malays. J. Microbiol. 13: 100-108. https://doi.org/10.21161/mjm.92016
  13. Yokoyama E, Murakami K, Shiwa Y, Ishige T, Ando N, Kikuchi T, et al. 2014. Phylogenetic and population genetic analysis of Salmonella enterica subsp. enterica serovar Infantis strains isolated in Japan using whole genome sequence data. Infect. Genet. Evol. 27: 62-68. https://doi.org/10.1016/j.meegid.2014.06.012
  14. Richter M, Rossello-Mora R, Oliver Glockner F, Peplies J. 2016. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32: 929-931. https://doi.org/10.1093/bioinformatics/btv681
  15. Auch AF, von Jan M, Klenk H-P, Goker M. 2010. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand. Genom. Sci. 2: 117-134. https://doi.org/10.4056/sigs.531120
  16. Ohta T, Shiwa Y. 2023. Hybrid genome assembly of short and long reads in galaxy. In: Arakawa K, editor. Nanopore Sequencing: Methods and Protocols. New York, NY: Springer US pp. 15-30.
  17. Nekrutenko A, Lariviere D, Gladman S. 2022. Unicycler Assembly.
  18. Kingkaew E, Konno H, Hosaka Y, Tanasupawat S. 2023. Probiogenomic analysis of Lactiplantibacillus sp. LM14-2 from Fermented Mussel (Hoi-dong), and Evaluation of its Cholesterol-lowering and immunomodulation effects. Probiotics Antimicrob. Proteins 15: 1206-12220. https://doi.org/10.1007/s12602-022-09977-7
  19. Grant JR, Enns E, Marinier E, Mandal A, Herman EK, Chen CY, et al. 2023. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 51: W484-W49220. https://doi.org/10.1093/nar/gkad326
  20. Tanizawa Y, Fujisawa T, Nakamura Y. 2018. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 34: 1037-1039. https://doi.org/10.1093/bioinformatics/btx713
  21. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 5.
  22. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, et al. 2020. The PATRIC bioinformatics resource center: expanding data and analysis capabilities. Nucleic Acids Res. 48(D1): D606-D12.
  23. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44: 6614-6624. https://doi.org/10.1093/nar/gkw569
  24. Carattoli A, Zankari E, Garcia-Fernandez A, Larsen MV, Lund O, Villa L, et al. 2014. PlasmidFinder and pMLST: in silico detection and typing of plasmids. J. Antimicrob. Chemother. AAC. 02412-14.
  25. Van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP. 2018. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 46(W1): W278-W81. doi: 10.1093/nar/gky383.
  26. Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. 2018. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46(W1): W95-W101. https://doi.org/10.1093/nar/gky418
  27. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37(suppl_1): D233-D8. https://doi.org/10.1093/nar/gkn663
  28. Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28: 27-30. https://doi.org/10.1093/nar/28.1.27
  29. Cosentino S, Voldby Larsen M, Moller Aarestrup F, Lund O. 2013. PathogenFinder--distinguishing friend from foe using bacterial whole genome sequence data. PLoS One 8: e77302.
  30. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. 2020. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 75: 3491-3500. https://doi.org/10.1093/jac/dkaa345
  31. Tetzschner AMM, Johnson JR, Johnston BD, Lund O, Scheutz F. 2020. In Silico Genotyping of Escherichia coli Isolates for extraintestinal virulence genes by use of whole-genome sequencing data. J. Clin. Microbiol. 58: 10.
  32. Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, Villa L, et al. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58: 3895-3903. https://doi.org/10.1128/AAC.02412-14
  33. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al. 2020. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48(D1): D517-d25. https://doi.org/10.1093/nar/gkz935
  34. Li X, Xie Y, Liu M, Tai C, Sun J, Deng Z, et al. 2018. oriTfinder: a web-based tool for the identification of origin of transfers in DNA sequences of bacterial mobile genetic elements. Nucleic Acids Res. 46(W1): W229-W34. https://doi.org/10.1093/nar/gky352
  35. Thitiprasert S, Piluk J, Tolieng V, Tanaka N, Shiwa Y, Fujita N, et al. 2021. Draft genome sequencing of Sporolactobacillus terrae SBT-1, an efficient bacterium to ferment concentrated sugar to dlactic acid. Arch. Microbiol. 203: 3577-3590. https://doi.org/10.1007/s00203-021-02352-0
  36. Ennahar S, Asou Y, Zendo T, Sonomoto K, Ishizaki A. 2001. Biochemical and genetic evidence for production of enterocins A and B by Enterococcus faecium WHE 81. Int. J. Food Microbiol. 70: 291-301. https://doi.org/10.1016/S0168-1605(01)00565-7
  37. Castillo Martinez FA, Balciunas EM, Salgado JM, Dominguez Gonzalez JM, Converti A, Oliveira RPdS. 2013. Lactic acid properties, applications and production: A review. Trends Food Sci. Technol. 30: 70-83. https://doi.org/10.1016/j.tifs.2012.11.007
  38. Dilthey AT, Meyer SA, Kaasch AJ. 2020. Ultraplexing: increasing the efficiency of long-read sequencing for hybrid assembly with k-mer-based multiplexing. Genome Biol. 21: 68.
  39. Lee I, Ouk Kim Y, Park S-C, Chun J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66: 1100-1103. https://doi.org/10.1099/ijsem.0.000760
  40. Parker C, Becker E, Zhang X, Jandle S, Meyer R. 2005. Elements in the co-evolution of relaxases and their origins of transfer. Plasmid 53: 113-118. https://doi.org/10.1016/j.plasmid.2004.12.007
  41. Bisicchia P, Bui NK, Aldridge C, Vollmer W, Devine KM. 2011. Acquisition of VanB-type vancomycin resistance by Bacillus subtilis: the impact on gene expression, cell wall composition and morphology. Mol. Microbiol. 81: 157-178. https://doi.org/10.1111/j.1365-2958.2011.07684.x
  42. Corcoran B, Stanton C, Fitzgerald G, Ross R. 2005. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl. Environ. Microbiol. 71: 3060-3067. https://doi.org/10.1128/AEM.71.6.3060-3067.2005
  43. Wang JD, Michelitsch MD, Weissman JS. 1998. GroEL-GroESmediated protein folding requires an intact central cavity. Proc. Natl. Acad. Sci. USA 95: 12163-1218.
  44. Harvey KL, Jarocki VM, Charles IG, Djordjevic SP. 2019. The diverse functional roles of elongation factor Tu (EF-Tu) in microbial pathogenesis. Front. Microbiol. 10: 2351.
  45. Krajewska J, Arent Z, Wieckowski D, Zolkiewski M, Kedzierska-Mieszkowska S. 2016. Immunoreactivity of the AAA+ chaperone ClpB from Leptospira interrogans with sera from Leptospirainfected animals. BMC Microbiol. 16: 151.