DOI QR코드

DOI QR Code

Backbone Cyclization of Flavin Mononucleotide-Based Fluorescent Protein Increases Fluorescence and Stability

  • Tingting Lin (School of Life Science, Anhui Agricultural University) ;
  • Yuanyuan Ge (School of Life Science, Anhui Agricultural University) ;
  • Qing Gao (School of Life Science, Anhui Agricultural University) ;
  • Di Zhang (School of Life Science, Anhui Agricultural University) ;
  • Xiaofeng Chen (School of Life Science, Anhui Agricultural University) ;
  • Yafang Hu (School of Life Science, Anhui Agricultural University) ;
  • Jun Fan (School of Life Science, Anhui Agricultural University)
  • 투고 : 2023.05.11
  • 심사 : 2023.08.17
  • 발행 : 2023.12.28

초록

Flavin mononucleotide-binding proteins or domains emit cyan-green fluorescence under aerobic and anaerobic conditions, but relatively low fluorescence and less thermostability limit their application as reporters. In this work, we incorporated the codon-optimized fluorescent protein from Chlamydomonas reinhardtii with two different linkers independently into the redox-responsive split intein construct, overexpressed the precursors in hyperoxic Escherichia coli SHuffle T7 strain, and cyclized the target proteins in vitro in the presence of the reducing agent. Compared with the purified linear protein, the cyclic protein with the short linker displayed enhanced fluorescence. In contrast, cyclized protein with incorporation of the long linker including the myc-tag and human rhinovirus 3C protease cleavable sequence emitted slightly increased fluorescence compared with the protein linearized with the protease cleavage. The cyclic protein with the short linker also exhibited increased thermal stability and exopeptidase resistance. Moreover, induction of the target proteins in an oxygen-deficient culture rendered fluorescent E. coli BL21 (DE3) cells brighter than those overexpressing the linear construct. Thus, the cyclic reporter can hopefully be used in certain thermophilic anaerobes.

키워드

과제정보

This study was financially supported by the Anhui Educational Committee Foundation (KJ2020A0113), P.R. China.

참고문헌

  1. Rodriguez EA, Campbell RE, Lin JY, Lin MZ, Miyawaki A, Palmer AE, et al. 2017. The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem. Sci. 42: 111-129.
  2. Mukherjee A, Schroeder CM. 2015. Flavin-based fluorescent proteins: emerging paradigms in biological imaging. Curr. Opin. Biotechnol. 31: 16-23.
  3. Buckley AM, Petersen J, Roe AJ, Douce GR, Christie JM. 2015. LOV-based reporters for fluorescence imaging. Curr. Opin. Chem. Biol. 27: 39-45.
  4. Wingen M, Jaeger KE, Gensch T, Drepper T. 2017. Novel thermostable flavin-binding fluorescent proteins from thermophilic organisms. Photochem. Photobiol. 93: 849-856.
  5. Mukherjee A, Weyant KB, Agrawal U, Walker J, Cann IK, Schroeder CM. 2015. Engineering and characterization of new LOV-based fluorescent proteins from Chlamydomonas reinhardtii and Vaucheria frigida. ACS Synth. Biol. 4: 371-377.
  6. Close DW, Paul CD, Langan PS, Wilce MC, Traore DA, Halfmann R, et al. 2015. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering. Proteins 83: 1225-1237.
  7. Cardoso Ramos F, Cupellini L, Mennucci B. 2021. Computational investigation of structural and spectroscopic properties of LOV-based proteins with improved fluorescence. J. Phys. Chem. B 125: 1768-1777.
  8. Mishra A, Sharma A, Kateriya S. 2023. Effect of tryptophan mutation on the structure of LOV1 domain of phototropin1 protein of Ostreococcus tauri: a combined molecular dynamics simulation and biophysical approach. Biochim. Biophys. Acta Gen. Subj. 1867: 130304.
  9. Ko S, Hwang B, Na JH, Lee J, Jung ST. 2019. Engineered Arabidopsis blue light receptor LOV domain variants with improved quantum yield, brightness, and thermostability. J. Agric. Food Chem. 67: 12037-12043.
  10. Liang GT, Lai C, Yue Z, Zhang H, Li D, Chen Z, et al. 2022. Enhanced small green fluorescent proteins as a multisensing platform for biosensor development. Front. Bioeng. Biotechnol. 10: 1039317.
  11. Mukherjee A, Weyant KB, Walker J, Schroeder CM. 2012. Directed evolution of bright mutants of an oxygen-independent flavin-binding fluorescent protein from Pseudomonas putida. J. Biol. Eng. 6: 20.
  12. He X, Zhang S, Dang D, Lin T, Ge Y, Chen X, et al. 2023. Detection of human annexin A1 as the novel N-terminal tag for separation and purification handle. Microb. Cell Fact. 22: 2.
  13. Baird GS, Zacharias DA, Tsien RY. 2000. Biochemistry, mutagenesis, and oligomerization of DSRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. USA 97: 11984-11989.
  14. Sarmiento C, Camarero JA. 2019. Biotechnological applications of protein splicing. Curr. Protein Pept. Sci. 20: 408-424.
  15. Scott CP, Abel-Santos E, Wall M, Wahnon DC, Benkovic SJ. 1999. Production of cyclic peptides and proteins in vivo. Proc. Natl. Acad. Sci. USA 96: 13638-13643.
  16. Zhao Z, Ma X, Li L, Zhang W, Ping S, Xu MQ, et al. 2010. Protein cyclization enhanced thermostability and exopeptidase-resistance of green fluorescent protein. J. Microbiol. Biotechnol. 20: 460-466.
  17. Ciragan A, Aranko AS, Tascon I, Iwai H. 2016. Salt-inducible protein splicing in cis and trans by inteins from extremely Halophilic archaea as a novel protein-engineering tool. J. Mol. Biol. 428: 4573-4588.
  18. Stevens AJ, Sekar G, Shah NH, Mostafavi AZ, Cowburn D, Muir TW. 2017. A promiscuous split intein with expanded protein engineering applications. Proc. Natl. Acad. Sci. USA 114: 8538-8543.
  19. Callahan BP, Stanger M, Belfort M. 2013. A redox trap to augment the intein toolbox. Biotechnol. Bioeng. 110: 1565-1573.
  20. Lin T, Zhang S, Zhang D, Chen X, Ge Y, Hu Y, et al. 2023. Use of the redox-dependent intein system for enhancing production of the cyclic green fluorescent protein. Protein Expr. Purif. 14: 106272.
  21. Zhou C, Yan Y, Fang J, Cheng B, Fan J. 2014. A new fusion protein platform for quantitatively measuring activity of multiple proteases. Microb. Cell Fact. 13: 44.
  22. Xiao W, Jiang L, Wang W, Wang R, Fan J. 2018. Evaluation of rice tetraticopeptide domain-containing thioredoxin as a novel solubility-enhancing fusion tag in Escherichia coli. J. Biosci. Bioeng. 125: 160-167.
  23. Kurz M, Cowieson NP, Robin G, Hume DA, Martin JL, Kobe B, et al. 2006. Incorporating a TEV cleavage site reduces the solubility of nine recombinant mouse proteins. Protein Expr. Purif. 50: 68-73.
  24. Zou W, Nguyen HN, Zastrow ML. 2022. Mutant flavin-based fluorescent protein sensors for detecting intracellular zinc and copper in Escherichia coli. ACS Sens. 7: 3369-3378.
  25. Nikolaev A, Yudenko A, Smolentseva A, Bogorodskiy A, Tsybrov F, Borshchevskiy V, et al. 2023. Fine spectral tuning of a flavin-binding fluorescent protein for multicolor imaging. J. Biol. Chem. 299: 102977.
  26. Losi A, Gartner W, Raffelberg S, Cella Zanacchi F, Bianchini P, Diaspro A, et al. 2013. A photochromic bacterial photoreceptor with potential for super-resolution microscopy. Photochem. Photobiol. Sci. 12: 231-235.
  27. Yudenko A, Smolentseva A, Maslov I, Semenov O, Goncharov IM, Nazarenko VV, et al. 2021. Rational design of a split flavin-based fluorescent reporter. ACS Synth. Biol. 10: 72-83.
  28. Homans RJ, Khan RU, Andrews MB, Kjeldsen AE, Natrajan LS, Marsden S, et al. 2018. Two photon spectroscopy and microscopy of the fluorescent flavoprotein, iLOV. Phys. Chem. Chem. Phys. 20: 16949-16955.
  29. Iwai H, Pluckthun A. 1999. Circular beta-lactamase: stability enhancement by cyclizing the backbone. FEBS Lett. 459: 166-172.
  30. Nandy S, Maranholkar VM, Crum M, Wasden K, Patil U, Goyal A, et al. 2023. Expression and characterization of intein-cyclized trimer of Staphylococcus aureus protein A domain Z. Int. J. Mol. Sci. 24: 1281.
  31. Iwai H, Lingel A, Pluckthun A. 2001. Cyclic green fluorescent protein produced in vivo using an artificially split PI-PfuI intein from Pyrococcus furiosus. J. Biol. Chem. 276: 16548-16554.
  32. Boassa D, Lemieux SP, Lev-Ram V, Hu J, Xiong Q, Phan S, et al. 2019. Split-miniSOG for spatially detecting intracellular protein-protein interactions by correlated light and electron microscopy. Cell Chem. Biol. 26: 1407-1416.
  33. Nazarenko VV, Remeeva A, Yudenko A, Kovalev K, Dubenko A, Goncharov IM, et al. 2019. A thermostable flavin-based fluorescent protein from Chloroflexus aggregans: a framework for ultra-high resolution structural studies. Photochem. Photobiol. Sci. 18: 1793-1805.
  34. Halavaty AS, Moffat K. 2007. N- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa. Biochemistry 46: 14001-14009.
  35. Ojima-Kato T, Nagai S, Nakano H. 2017. N-terminal SKIK peptide tag markedly improves expression of difficult-to-express proteins in Escherichia coli and Saccharomyces cerevisiae. J. Biosci. Bioeng. 123: 540-546.
  36. Cava F, de Pedro MA, Blas-Galindo E, Waldo GS, Westblade LF, Berenguer J. 2008. Expression and use of superfolder green fluorescent protein at high temperatures in vivo: a tool to study extreme thermophile biology. Environ. Microbiol. 10: 605-613.
  37. Stevens AJ, Brown ZZ, Shah NH, Sekar G, Cowburn D, Muir TW. 2016. Design of a split intein with exceptional protein splicing activity. J. Am. Chem. Soc. 138: 2162-2165.
  38. Xu Y, Zhang L, Ma B, Hu L, Lu H, Dou T, et al. 2018. Intermolecular disulfide bonds between unpaired cysteines retard the C-terminal trans-cleavage of Npu DnaE. Enzyme Microb. Technol. 118: 6-12.