DOI QR코드

DOI QR Code

Effect of a Bacterial Laccase on the Quality and Micro-Structure of Whole Wheat Bread

  • Jingjing Wang (School of Life Sciences, Hefei Normal University) ;
  • Han Bai (School of Life Sciences, Hefei Normal University) ;
  • Ran Zhang (School of Life Sciences, Hefei Normal University) ;
  • Guoao Ding (School of Life Sciences, Hefei Normal University) ;
  • Xuran Cai (School of Life Sciences, Hefei Normal University) ;
  • Wei Wang (School of Life Sciences, Hefei Normal University) ;
  • Guilan Zhu (School of Life Sciences, Hefei Normal University) ;
  • Peng Zhou (School of Life Sciences, Hefei Normal University) ;
  • Yan Zhang (School of Life Sciences, Hefei Normal University)
  • 투고 : 2023.05.09
  • 심사 : 2023.07.18
  • 발행 : 2023.12.28

초록

The gluten protein content in whole-wheat flour is low, which affects the elasticity and viscosity of the dough. Enzymatic modification of the protein may result in a network that mimics gluten, which plays an important role in the processing of whole-wheat foods. In this study, the effects of Halomonas alkaliantartica laccase (LacHa) on the quality parameters of whole-wheat bread were investigated. The optimum dosage of LacHa was 4 U/100 g of whole-wheat flour. At this dosage, whole-wheat bread exhibited the best specific volume and optimum texture parameters. Laccase also extended the storage duration of whole-wheat bread. We analyzed the micro-structure of the dough to determine its gluten-free protein extractable rate and free sulfhydryl group content, and verify that LacHa mediates cross-linking of gluten-free proteins. The results demonstrated that the cross-linking of gluten-free protein by LacHa improves the texture of whole-wheat bread. As a flour improver, LacHa has great developmental and application potential in baked-food production.

키워드

과제정보

This study was funded by the National Natural Science Foundation of China (Grant No. 31800049); the Natural Science Foundation of Higher Education in Anhui Province (Grant Nos. KJ2021ZD0113 & 2022AH052156 & 2022AH052166); the Program for Young Outstanding Talents in Anhui Province (Grant No. gxyqZD2022071), and the Provincial Scientific Research Platform Open Project of Fuyang Normal University (Grant No. FSKFKT010).

참고문헌

  1. Jenkins DJ, Kendall CW, Augustin LS, Franceschi S, Hamidi M, Marchie A, et al. 2002. Glycemic index: overview of implications in health and disease. AM. J. Clin. Nutr. 76: 266-273.
  2. Ercili Cura D, Lantto R, Lille M, Andberg M, Kruus K, Buchert J. 2009. Laccase-aided protein modification: effects on the structural properties of acidified sodium caseinate gels. Int. Dairy J. 19: 737-745.
  3. Backes E, Kato CG, Correa RCG, Peralta Muniz Moreira RDF, Peralta RA, Barros L, et al. 2021. Laccases in food processing: current status, bottlenecks and perspectives. Trend Food. Sci. Technol. 115: 445-460.
  4. Fu BX. 2008. Asian noodles: history, classification, raw materials, and processing. Food Res. Int. 41: 888-902.
  5. Ludwig DS. 2002. The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 287: 2414-2423.
  6. Liu FY, Yang Z, Guo XN, Xing JJ, Zhu KX. 2021. Influence of protein type, content and polymerization on in vitro starch digestibility of sorghum noodles. Food Res. Int. 142: 110199.
  7. Livesey G, Taylor R, Hulshof T, Howlett J. 2008. Glycemic response and health--a systematic review and meta-analysis: relations between dietary glycemic properties and health outcomes. Am. J. Clin. Nutr. 87: 258-268.
  8. Gomez M, Gutkoski LC, Bravo-Nunez A. 2020. Understanding whole-wheat flour and its effect in breads: a review. Compr. Rev. Food Sci. Saf. 19: 3241-3265.
  9. Ma S, Wang Z, Guo X, Wang F, Huang J, Sun B, Wang X. 2021. Sourdough improves the quality of whole-wheat flour products: mechanisms and challenges-A review. Food Chem. 360: 30038.
  10. Lin S, Gao J, Jin X, Wang Y, Dong Z, Ying J, Zhou W. 2020. Whole-wheat flour particle size influences dough properties, bread structure and in vitro starch digestibility. Food. Funct. 11: 3610-3620.
  11. Cardone G, D'Incecco P, Pagani MA, Marti A. 2020. Sprouting improves the bread-making performance of whole wheat flour (Triticum aestivum L.). J. Sci. Food Agric. 100: 2453-2459.
  12. Guo XN, Wu SH, Zhu KX. 2020. Effect of superheated steam treatment on quality characteristics of whole wheat flour and storage stability of semi-dried whole wheat noodle. Food. Chem. 322: 126738.
  13. Jia-Xuan F, Xiao-Na G, Ke-Xue Z. 2022. Impact of laccase-induced protein cross-linking on the in vitro starch digestion of black highland barley noodles. J. Food. Hydrocolloids 124: 107298.
  14. Wee MSM, Jeyakumar Henry C. 2019. Effects of transglutaminase on the protein network and in vitro starch digestibility of Asian wheat noodles. Foods 8: 607.
  15. Bellido GG, Hatcher DW. 2011. Effects of a cross-linking enzyme on the protein composition, mechanical properties, and microstructure of Chinese-style noodles. Food. Chem. 125: 813-822.
  16. Flander L, Holopainen U, Kruus K, Buchert J. 2011. Effects of tyrosinase and laccase on oat proteins and quality parameters of glutenfree oat breads. J. Agric. Food. Chem. 59: 8385-8390.
  17. Kudanga T, Nyanhongo GS, Guebitz GM, Burton S. 2011. Potential applications of laccase-mediated coupling and grafting reactions: a review. Enzyme. Microb. Technol. 48: 195-208.
  18. Merete F, Otte J, Qvist KB. 1998. Cross-linking of whey proteins by enzymatic oxidation. J. Agric. Food Chem. 46: 1326-1333.
  19. Wang J, Chang F, Tang X, Li W, Yin Q, Yang Y, Hu Y. 2020. Bacterial laccase of Anoxybacillus ayderensis SK3-4 from hot springs showing potential for industrial dye decolorization. Ann. Microbiol. 70: 51.
  20. Rombouts I, Jansens KJA, Lagrain B, Delcour JA, Zhu KX. 2014. The impact of salt and alkali on gluten polymerization and quality of fresh wheat noodles. J. Cereal. Sci. 60: 507-513.
  21. El Khoury D, Balfour-Ducharme S, Joye IJ. 2018. A review on the gluten-free diet: technological and nutritional challenges. Nutrients 10: 1410.
  22. Molina MA, Cazzaniga A, Milde LB, Sgroppo SC, Zapata PD, Fonseca MI. 2023. Purification and characterization of a fungal laccase expressed in Kluyveromyces lactis suitable for baking. J. Food Sci. 88: 1365-1377.
  23. Figueroa-Espinoza MC, Morel MH, Rouau X. 1998. Effect of lysine, tyrosine,, cysteine, and glutathione on the oxidative crosslinking of Feruloylated Arabinoxylans by a fungal laccase. J. Agric. Food Chem. 46: 2583-2589.
  24. Brijwani K, Rigdon A, Vadlani PV. 2010. Fungal laccases: production, function, and applications in food processing. Enzyme Res. 2010: 149748.
  25. Kan L, Oliviero T, Verkerk R, Fogliano V, Capuano E. 2020. Interaction of bread and berry polyphenols affects starch digestibility and polyphenols bio-accessibility. J. Funct. Foods 68: doi:10.1016/j.jff.2020.103924.
  26. Idehen E, Tang Y, Sang S. 2017. Bioactive phytochemicals in barley. J. Food. Drug. Anal. 25: 148-161.
  27. Gimenez-Bastida JA, Piskula M, Zielinski H. 2015. Recent advances in development of gluten-free buckwheat products. Trends Food Sci. Tech. 44: 58-65.
  28. Onyango C, Mutungi C, Unbehend G, Lindhauer MG. 2011. Rheological and textural properties of sorghum-based formulations modified with variable amounts of native or pregelatinised cassava starch. LWT-Food Sci. Technol. 44: 687-693.
  29. Holtekjolen AK, Baevre AB, Rodbotten M, Berg H, Knutsen SH. 2008. Antioxidant properties and sensory profiles of breads containing barley flour. Food. Chem. 110: 414-421.
  30. Fang ZM, Li TL, Chang F, Zhou P, Fang W, Hong YZ, et al. 2012. A new marine bacterial laccase with chloride-enhancing, alkali alkaline-dependent activity and dye decolorization ability. Bioresour. Technol. 111: 36-41.
  31. Bonet A, Rosell CM, Perez-Munuera I, Hernando I. 2007. Rebuilding gluten network of damaged wheat by means of glucose oxidase treatmen. J. Sci. Food Agric. 87: 1301-1307.
  32. Wagner M, Morel MH, Bonicel J, Cuq B. 2011. Mechanisms of heat-mediated aggregation of wheat gluten protein upon pasta processing. J. Sci. Food. Agric. 59: 3146-3154.
  33. Beveridge T, Toma S J, Nakai S D. 1974. Determination of SH- and SS-groups in some food proteins using Ellman's reagent. J. Food Sci. 39: 49-51.
  34. Kohler P, Belitz H D, Wieser H. 1991. Disulphide bonds in wheat gluten: isolation of a cystine peptide from glutenin. Z. Lebensm. Unters. Forsch. 192: 234-239.
  35. Cai X, Hong Y, Gu Z, Zhang Y. 2011. The effect of electrostatic interactions on pasting properties of potato starch/xanthan gum combinations. Food Res. Int. 44: 3079-3086.
  36. Manhivi VE, Amonsou EO, Kudanga T. 2018. Laccase-mediated crosslinking of gluten-free amadumbe flour improves rheological properties. Food. Chem. 264: 157-163.
  37. Flander L, Rouau X, Morel MH, Autio K, Seppanen-Laakso T, Kruus K, et al. 2008. Effects of laccase and xylanase on the chemical and rheological properties of oat and wheat doughs. J. Agric. Food Chem. 56: 5732-5742.
  38. Janusz G, Pawlik A, Swiderska-Burek U, Polak J, Sulej J, Jarosz-Wilkolazka A, et al. 2020. Laccase properties, physiological functions, and evolution. Int. J. Mol. Sci. 21: 966.
  39. He YJ, Guo JY, Ren GY, Cui GT, Han SH, Liu JX. 2020. Effects of konjac glucomannan on the water distribution of frozen dough and corresponding steamed bread quality. Food Chem. 330: 127243.
  40. Sato ACK, Perrechil FA, Costa AAS, Santana RC, Cunha RL. 2015. Cross-linking proteins by laccase: effects on the droplet size and rheology of emulsions stabilized by sodium caseinate. Food Res. Int. 75: 244-251.
  41. Selinheimo E, Kruus K, Buchert J, Hopia A, Autio K. 2006. Effects of laccase, xylanase and their combination on the rheological properties of wheat doughs. J. Cereal Sci. 43: 152-159.
  42. Labat E, Morel MH, Rouau X. 2000. Effects of laccase and ferulic acid on wheat flour doughs. Cereal Chem. 77: 823-828.
  43. Joye IJ, Lagrain B, Delcour JA. 2009. Use of chemical redox agents and exogenous enzymes to modify the protein network during breadmaking - A review. J. Cereal Sci. 50: 11-21.
  44. Patel SKS, Gupta RK, Kim SY, Kim IW, Kalia VC, Lee JK. 2021. Rhus vernicifera laccase immobilization on magnetic nanoparticles to improve stability and its potential application in bisphenol A degradation. Indian. J. Microbiol. 61: 45-54.
  45. Agrawal K, Chaturvedi V, Verma P. 2018. Fungal laccase discovered but yet undiscovered. Bioresour. Bioprocess. 5. doi:10.1186/s40643-018-0190-z.
  46. Guan ZB, Luo Q, Wang HR, Chen Y, Liao XR. 2018. Bacterial laccases: promising biological green tools for industrial applications. Cell. Mol. Life. Sci. 75: 3569-3592.
  47. Tonin F, Melis R, Cordes A, Sanchez-Amat A, Pollegioni L, Rosini E. 2016. Comparison of different microbial laccases as tools for industrial uses. N. Biotechnol. 33: 387-398.
  48. Canas AI, Camarero S. 2010. Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol. Adv. 28: 694-705.
  49. Hu XH, Cheng L, Hong Y, Li ZF, Li CM, Gu ZB. 2022. Impact of celluloses and pectins restrictions on gluten development and water distribution in potato-wheat flour dough. Int. J. Biol. Macromol. 206: 534-542.
  50. Ayala-Solo F, Serna-Saldivar S, Welti-Chanes J. 2017. Effect of arabinoxylans and laccase on batter rheology and quality of yeastleavened gluten-free breads. J. Cereal Sci. 73: 10-17.
  51. Nino-Medina G, Gutierrez-Soto G, Urias-Orona V, Hernandez-Luna CE. 2017. Effect of laccase from Trametes maxima CU1 on physicochemical quality of bread. Cogent Food Agric. 3: 1328762.