DOI QR코드

DOI QR Code

Interaction study of molten uranium with multilayer SiC/Y2O3 and Mo/Y2O3 coated graphite

  • S.K. Sharma (Atomic Fuels Division, Bhabha Atomic Research Centre) ;
  • M.T. Saify (Atomic Fuels Division, Bhabha Atomic Research Centre) ;
  • Sanjib Majumdar (Materials Processing & Corrosion Engineering Division, Bhabha Atomic Research Centre) ;
  • Palash K. Mollick (Glass and Advanced Materials Division, Bhabha Atomic Research Centre)
  • Received : 2021.08.02
  • Accepted : 2022.12.21
  • Published : 2023.05.25

Abstract

Graphite crucibles are used for melting uranium and its alloys in VIM furnace. Various coating materials namely Al2O3, ZrO2, MgO etc. are applied on the inner surface of the crucibles using paint brush or thermal spray technique to mitigate U-C interaction. These leads to significant amount of carbon pick-up in uranium. In this study, the attempts are made to develop multilayer coatings comprising of SiC/Y2O3 and Mo/Y2O3 on graphite to study the feasibility of minimizing U-C interaction. The parameters are optimized to prepare SiC coating of about 70㎛ thickness using CVD technique on graphite coupons and subsequently Y2O3 coating of about 250㎛ thickness using plasma spray technique. Molybdenum and Y2O3 layers were deposited using plasma spray technique with 70㎛ and 250㎛ thickness, respectively. Interaction studies of the coated graphite with molten uranium at 1450℃ for 20 min revealed that Y2O3 coating with SiC interlayer provides physical barrier for uranium-graphite interaction, however, this led to the physical separation of coating layer. Y2O3 coating with Mo interlayer provided superior barrier effect showing no degradation and the coatings remained intact after interaction tests. Therefore, the Mo/Y2O3 coating was found to be a promising solution for minimizing carbon pick-up during uranium/uranium alloy melting.

Keywords

Acknowledgement

The authors are thankful to Shri Amit Sharma and all other staff of AFD, BARC for their extended support to carrying out the work.

References

  1. J.S. Morell, M.J. Jackson, Melting and casting of uranium, Uranium Processing and Properties (2013) 35-69, https://doi.org/10.1007/978-1-4614-7591-0_2 (chapter 2).
  2. B. Patidar, M.M. Hussain, S.K. Jha, Analytical, numerical and experimental validation of coil voltage in induction melting process, Int. J. Electromagn 11 (2015) 342-351, https://doi.org/10.5281/zenodo.3762965.
  3. C.E. Holocomb, R.H. Reiner, N.L. Dykes, Use of Tribocor 532N for a carbon-free induction furnace for vacuum induction melting and casting of uranium and its alloys, J. Mater. Sci. Lett. 6 (1987) 1353-1355, https://doi.org/10.1007/BF01794617.
  4. W. D Wilkinson, Uranium Metallurgy, Interscience publishers, New York, London, 1962.
  5. A.X. Sum, The Uranium Carbon System: the Structure of Dimethyleberyllium and its Bearing on Chemical Valance", Retrospective Theses and Dissertation, Iowa State University digital repository, 1950, https://doi.org/10.31274/rtd-180813-16314 available from.
  6. P.V. Ananthapadmanabhan, Y. Chakravarthy, V. Chaturvedi, A. Pragatheeswaran, Plasma-Sprayed ceramic coatings for barrier applications against molten uranium corrosion, J. Miner. 67 (2015) 1554-1564, https://doi.org/10.1007/s11837-015-1455-z.
  7. H.M. Feder, N.R. Challew, C.L. Rosen, Interaction of Uranium and its Alloys with Ceramic Oxides", Report ANL-5765, Argonne National Laboratory, Lemont, Illinois, 1957.
  8. Jagadeesh Sure, Ch JagadeeswaraRao, P. Venkatesh, B. Prabhakara Reddy, C. Mallika, U. KamachiMudali, Evaluation of plasma sprayed alumina - 40 wt% titania and partially stabilized zirconia coatings on high density graphite for uranium melting Application, Ceram. Int. 40 (2014) 6509-6523, https://doi.org/10.1016/j.ceramint.2013.11.104.
  9. B. Padmanabhan PVA, S. Ramanathan, K.P. Sreekumar, R.U. Satpute, T.R.G. Kutty, M.R. Gonal, et al., Synthesis of thermal spray grade yttrium oxide powder and its application for plasma spray deposition, Mater. Chem. Phys. 106 (2007) 416-421, https://doi.org/10.1016/j.matchemphys.2007.06.027.
  10. N. Alangi, J. Mukherjee, P. Anupama, M.K. Verma, Y. Chakravarthy, P.V.A. Padmanabhan, et al., Liquid uranium corrosion studies of protective yttria coatings on tantalum substrates, J. Nucl. Mater. 410 (2011) 39-45, https://doi.org/10.1016/j.jnucmat.2010.12.307.
  11. J.W. Koger, C.E. Holcombe, J.G. Banker, Coatings on graphite crucibles used in melting uranium, Thin Solid Films 39 (1976) 297-303, https://doi.org/10.1016/0040-6090(76)90649-0.
  12. C.E. Holocombe, Uranium/Ceramic Oxide and carbon/ceramic oxide interaction studies, Metall. Trans. 9B (1978) 317-319, https://doi.org/10.1007/BF02653700.
  13. N. Alangi, J. Mukherjee, P. Anupama, M.K. Verma, Y. Chakravarthy, P.V.A. Padmanabhan, A.K. Das, L.M. Gantayet, Liquid uranium corrosion studies of protective yttria coatings on tantalum substrate, J. Nucl. Mater. 410 (2011) 39-45, https://doi.org/10.1016/j.jnucmat.2010.12.307.
  14. Ch. Jagadeesware Rao, C. Mallika, U.K. Mudali, Development of silicon carbide interlayer for deposition of yttria over graphite for uranium melting application, International Corrosion Conference and Expo, November 19 - 21 (2015). Chennai, India.
  15. Ch. Jagadeeswara Rao, E. Vetrivendan, B. Madhura, S. Nigshen, A review of ceramic coatings for high temperature uranium melting applications, J. Nucl. Mater. 540 (2020), 152354, https://doi.org/10.1016/j.jnucmat.2020.152354.
  16. Ki-Won Hong, Ki-Hwan Kim, Jong-Hwan Kim, Analysis of SiC-layer for graphite crucible coating for casting of metal fuel slugs for sodium-cooled fast reactor, J. Nanosci. Nanotechnol. 17 (11) (2017) 8587-8592, https://doi.org/10.1166/jnn.2017.15170.
  17. Gue Serb Cho and layers,Kyeong, Characterization of plasma-sprayed tungsten coating on graphite with intermediate, Surf. Coating. Technol. 209 (2012) 131-136, https://doi.org/10.1016/j.surfcoat.2012.08.051.
  18. Ch Jagadeeswara Rao, A. Ravi Shankar, C. Mallika, U. Kamachi Mudali, Performance evaluation of plasma sprayed yttria coatings on high density graphite for cathode processor applications, Ceram. Int. 41 (2015) 3128-3136, https://doi.org/10.1016/j.ceramint.2014.10.157.
  19. C. J. Rao, C. Mallika, and U. K. Mudali, "Development of silicon carbide interlayer for deposition of yttria over graphite for uranium melting application", A Paper Published in CORCON 2015 Conference at Chennai Trade Centre CTC Complex on November 19 to 21.
  20. Website: https://www.graphitesales.com/data_sheets/GLM-50.pdf accessed on 22-12-2021.
  21. H. Pedersen, S.D. Elliott, Studying chemical vapour deposition processes with theoretical chemistry, Theor. Chem. Acc. 133 (2014), https://doi.org/10.1007/s00214-014-1476-7. Article number: 1476.
  22. P. Fauchais, "Understanding plasma spraying, topical review, J. Phys D: Appl. Phys. 37 (2004) R86, https://doi.org/10.1088/0022-3727/37/9/R02.
  23. Taylor Keffer Blair, Development of a plasma spray process monitoring system through aeroacoustic signal analysis, Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Materials Science and Engineering on February 17 (2015), Blacksbur, Virginia.
  24. J.V. Heberlein, Electrode phenomena in DC arcs and their influence on plasma torch design, High Temperature Material Processes: An International Quarterly of High Technology Plasma Processes 6 (3) (2002).
  25. Technical Report on "Principle, Advantages, Limitations and Supplications of Two-Colour Pyrometers in the Thermal Process" by Albert Book, Germany Infrared Thermometer Solution.
  26. Hitoshi Habuka, Mayuka Watanabe, Mikiya Nishida, Takashi Sekiguchi, Poly-crystalline silicon carbide film depositon using monomethylsilane and hydrogen chloride gases, J. Cryst. Growth 201 (22-23) (2007) 8961-8965, https://doi.org/10.1016/j.jcrysgro.2007.01.003.
  27. W.G. Zhang, Chemical vapor deposition of carbon, in: Chemical Vapor Deposition-From Hydrogen to Carbon, 2007, pp. 44-45, https://doi.org/10.1155/2019/4260153.
  28. Zi Jun Hu, K.J. Huttinger, Mechanisms of carbon deposition - a kinetic approach, Carbon 40 (2002) 624-628, https://doi.org/10.1016/S0008-6223(01)00316-5.
  29. Yeon-Gil Jung, Sung-Wan Park, Sung-Churl Choi, Effect of CH4 and H2 on CVD of SiC and TiC for possible fabrication of SiC/TiC/C FGM, Materials Letters 30 (1997) 339-345, https://doi.org/10.1016/S0167-577X(96)00221-2.
  30. Tsutomu Kaneko, Takashi Okuno, Hisami Yumoto, Growth kinetics of silicon carbide CVD", J. Cryst. Growth 91 (4) (1988) 599-604, https://doi.org/10.1016/0022-0248(88)90127-3.
  31. Y.L. Huo, Preparation and characterization of SiC coating on graphite substrate, Key Eng. Mater. 602-603 (2014) 412-415. https://doi.org/10.4028/www.scientific.net/KEM.602-603.412.
  32. A.N. Vorob'ev, Karpov SergeyYu, A.I. Zhmakin, A.A. Lovtsus, Effect of gas-phase nucleation on chemical vapor deposition of silicon carbide, J. Cryst. Growth 211 (1-4) (2000) 343-346, https://doi.org/10.1016/S0022-0248(99)00776-9.
  33. Y. Chakravarthy, Vandana Chaturvedi Shubhankar Bhandari, A. Pragatheeswaran, A. Nagraj, T.K. Thiyagrajan, P.V. Ananthapadmanaban, A.K. Das, Plasma spray deposition of yttrium oxide on graphite, coating characterization and interaction with molten uranium, J. Eur. Ceram. Soc. 35 (2015) 787-794, https://doi.org/10.1016/j.jeurceramsoc.2014.09.012.
  34. E. Vetrivendan, B. Madura, Ch. Jagadeeswara Rao, S. Ningshen, Pack cemented silicon carbide interlayer for plasma sprayed yttria over graphite, Mater. Manuf. Process. 34 (2019) 681-688, https://doi.org/10.1080/10426914.2019.1566961.
  35. R. McPherson, The relationship between the mechanisms of formation, microstructure and properties of plasma spray coatings, Thin Solid Films 38 (1981) 297-310, https://doi.org/10.1016/0040-6090(81)90633-7.
  36. Chinmayee Parida, Sonali Dash, Ziely Singh Chaudhary, Roneel prasad, Thermodynamic studies on uranium-molybdenum alloys, J. Phys. Chem. Solid. 62 (3) (2001) 585-897, https://doi.org/10.1016/S0022-3697(00)00219-5.