DOI QR코드

DOI QR Code

Performance assessment of HEPA filter to reduce internal dose against radioactive aerosol in nuclear decommissioning

  • 투고 : 2022.08.10
  • 심사 : 2023.01.15
  • 발행 : 2023.05.25

초록

The thermal cutting of contaminated or activated metals during decommissioning nuclear power plants inevitably results in the release of radioactive aerosol. Since radioactive aerosols are pernicious particles that contribute to the internal dose of workers, air conditioning units with a HEPA filter are used to remove radioactive aerosols. However, a HEPA filter cannot be used permanently. This study evaluates the efficiency and lifetime of filters in actual metal cutting condition using a plasma arc cutter and a high-resolution aerosol detector. The number concentration and size distribution of aerosols from 6 nm to 10 ㎛ were measured on both the upstream and downstream sides of the filter. The total aerosol removal efficiency of HEPA filter satisfies the standard of removing at least 99.97% of 0.3 ㎛ airborne particles, even if the pressure drop increases due to dust feeding load. The pressure drop and particle size removal efficiency at 0.3 ㎛ of the HEPA filter were found to increase with repeated cutting experiments. By contrast, the efficiency of used HEPA filter reduced in removing nano-sized aerosols by up to 79.26%. Altogether, these results can be used to determine the performance guidance and replacement frequency of HEPA filters used in nuclear power plants.

키워드

과제정보

This work was financially supported by the Industrial Technology Innovation Project (No.20201510300190) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy.

참고문헌

  1. S. Choi, N. Chae, Characteristics of aerosols from different metals with plasma arc torch, in: Aerosol Technology, 2018. Bilbao, Spain, June 18-20.
  2. N. Chae, M.H. Lee, S. Choi, B.G. Park, J.S. Song, Aerodynamic diameter and radioactivity distributions of radioactive aerosols from activated metals cutting for nuclear power plant decommissioning, J. Hazard Mater. 369 (2019) 727-745. https://doi.org/10.1016/j.jhazmat.2019.02.093
  3. M. Ebadian, S. Dua, H. Guha, Size Distribution and Rate of Production of Airborne Particulate Matter Generated during Metal Cutting, National Energy Technology Lab, National Energy Technology Lab., Morgantown, WV, 2001.
  4. M.H. Lee, W. Yang, Aerodynamic diameter distribution of aerosols from plasma arc cutting for steels at different cutting power levels, J. Radioanal. Nucl. Chem. 323 (2020) 613-624. https://doi.org/10.1007/s10967-019-06967-y
  5. N. Chae, S. Choi, Review on radioactive aerosols from decommissioning on nuclear power plant, in: International Youth Nuclear Congress, Bariloche, Argentina, March 11-17, 2018.
  6. M.H. Lee, W. Yang, N. Chae, S. Choi, High resolution size characterization of particulate contaminants for radioactive metal waste treatment, Nucl. Eng. Technol. 53 (7) (2021) 2277-2288. https://doi.org/10.1016/j.net.2021.01.029
  7. M.H. Lee, W. Yang, N. Chae, S. Choi, Performance assessment of HEPA filter against radioactive aerosols from metal cutting during nuclear decommissioning, Nucl. Eng. Technol. 52 (5) (2020) 1043-1050. https://doi.org/10.1016/j.net.2019.10.017
  8. R.A. Sadir, C.J. Velardez, R.A. Sadir, What is HEPA? How to achieve high efficiency particulate air filtration, in: Clean Room Technology in ART Clinics, CRC Press, 2016, pp. 75-84.
  9. IAEA, Nuclear Energy Series, Mobile Processing Systems for Radioactive Waste Management, 2014. No. NW-T-1.8.
  10. W.J. Kowalski, W.P. Bahnfleth, T.S. Whittam, Filtration of airborne microorganisms: modeling and prediction, Build. Eng. 105 (1999) 4-17.
  11. S.L. Alderman, M.S. Parsons, K.U. Hogancamp, C.A. Waggoner, Evaluation of the effect of media velocity on filter efficiency and most penetrating particle size of nuclear grade high-efficiency particulate air filters, J. Occup. Environ. Hyg. 5 (11) (2008) 713-720. https://doi.org/10.1080/15459620802383934
  12. G. Smith, Nuclear Air Cleaning Handbook, U.S. DOE, Washington, DC, 2003. DOE-HDBK-1169-2003.
  13. J. Gustavsson, A. Ginestet, P. Tronville, M. Hyttinen, Air Filtration in HVAC Systems, REHVA guidebook, 2010.
  14. D.Q. Chang, J.X. Liu, S.C. Chen, Factors affecting particle depositions on electret filters used in residential HVAC systems and indoor air cleaners, Aerosol Air Qual. Res. 18 (2018) 3211-3219. https://doi.org/10.4209/aaqr.2018.10.0373
  15. J.H. Vincent, Aerosol Sampling: Science, Standards, Instrumentation and Applications, John Wiley & Sons, 2007.
  16. R. Baskaran, V. Subramanian, J. Misra, R. Indira, P. Chellapandi, Baldev Raj, Aerosol characterization and measurement techniques towards SFR safety studies, in: First International Conference on ANIMMA, IEEE, 2009.
  17. Z.Q. Yin, X.F. Li, F.B. Bao, C.X. Tu, X.Y. Gao, Thermophoresis and Brownian motion effects on nanoparticle deposition inside a 90 square bend tube, Aerosol Air Qual. Res. 18 (7) (2018) 1746-1755. https://doi.org/10.4209/aaqr.2018.02.0047
  18. T. Sparks, G. Chase, Filters and Filtration Handbook, sixth ed., Butterworth-Heinemann, Oxford, 2016.
  19. R. Mostofi, A. Noel, F. Haghighat, A. Bahloul, J. Lara, Y. Cloutier, Impact of two particle measurement techniques on the determination of N95 class respirator filtration performance against ultrafine particles, J. Hazard Mater. 217-218 (2012) 51-57. https://doi.org/10.1016/j.jhazmat.2012.02.058
  20. P. Penicot, D. Thomas, P. Contal, D. Leclerc, J. Vendel, Clogging of HEPA fibrous filters by solid and liquid aerosol particles: an experimental study, Filtrat. Separ. 36 (2) (1999) 59-64.
  21. F.X. Ouf, V.M. Mocho, S. Pontreau, Z. Wang, D. Ferry, J. Yon, Clogging of industrial High Efficiency Particulate Air (HEPA) filters in case of fire: from analytical to large-scale experiments, Aerosol. Sci. Technol. 48 (9) (2014) 939-947. https://doi.org/10.1080/02786826.2014.947022
  22. W. Bergman, J. Elliott, B. Bettencourt, J.W. Slawski, In-place HEPA Filter Penetration Test, Lawrence Livermore National Lab., 1997. UCRL-JC-127230; CONF-960715.
  23. S. Saari, A. Arffman, J. Harra, T. Ronkko, J. Keskinen, Performance evaluation of the HR-ELPI+ inversion, Aerosol. Sci. Technol. 52 (9) (2018) 1037-1047. https://doi.org/10.1080/02786826.2018.1500679
  24. A. Jarvinen, M. Aitomaa, A. Rostedt, J. Keskinen, J. Yli-Ojanper a, Calibration of the new electrical low pressure impactor (ELPI+), J. Aerosol Sci. 69 (2014) 150-159. https://doi.org/10.1016/j.jaerosci.2013.12.006
  25. H.J. Choi, S.B. Kim, S.H. Kim, M.H. Lee, Preparation of electrospun polyurethane filter media and their collection mechanisms for ultrafine particles, J. Air Waste Manage. Assoc. 64 (2014) 322-329. https://doi.org/10.1080/10962247.2013.858652
  26. S.H. Huang, C.W. Chen, Y.M. Kuo, C.Y. Lai, R. McKay, C.C. Chen, Factors affecting filter penetration and quality factor of particulate respirators, Aerosol Air Qual. Res. 13 (1) (2013) 162-171. https://doi.org/10.4209/aaqr.2012.07.0179
  27. ICRP, ICRP publication 68: dose coefficients for intakes of radionuclides by workers, Ann. ICRP (1994) 24.
  28. ICRP, ICRP Publication 66: human respiratory tract model for radiological protection, Ann. ICRP (1994) 24.
  29. A. Joubert, J.C. Laborde, L. Bouilloux, S. Chazelet, D. Thomas, Modelling the pressure drop across HEPA filters during cake filtration in the presence of humidity, Chem. Eng. J. 166 (2) (2011) 616-623. https://doi.org/10.1016/j.cej.2010.11.033
  30. W. Zhang, S. Deng, Y. Wang, Z. Lin, Dust loading performance of the PTFE HEPA media and its comparison with the glass fibre HEPA media, Aerosol Air Qual. Res. 18 (2018) 1921-1931. https://doi.org/10.4209/aaqr.2017.11.0481