DOI QR코드

DOI QR Code

An integrated risk-informed safety classification for unique research reactors

  • 투고 : 2022.08.24
  • 심사 : 2023.01.15
  • 발행 : 2023.05.25

초록

Safety classification of systems, structures, and components (SSC) is an essential activity for nuclear reactor design and operation. The current regulatory trend is to require risk-informed safety classification that considers first, the severity, but also the frequency of SSC failures. While safety classification for nuclear power plants is covered in many regulatory and scientific publications, research reactors received less attention. Research reactors are typically of lower power but, at the same time, are less standardized i.e., have more variability in the design, operational modes, and operating conditions. This makes them more challenging when considering safety classification. This work presents the Integrated Risk-Informed Safety Classification (IRISC) procedure which is a novel extension of the IAEA recommended process with dedicated probabilistic treatment of research reactor designs. The article provides the details of probabilistic analysis performed within safety classification process to a degree that is often missing in most literature on the topic. The article presents insight from the implementation of the procedure in the safety classification for the MARIA Research Reactor operated by the National Center for Nuclear Research in Poland.

키워드

과제정보

The authors gratefully acknowledge the support provided by Dr. Slawomir Potempski, Dr. Aleksej Kaszko, Bartlomiej Piwowarski, Aleksandra Niepokolczycka-Fenik, and Pawel Nowakowski from the National Centre for Nuclear Research.

참고문헌

  1. International Atomic Energy Agency (IAEA), IAEA Safety Standards Series No, SSG-30: Safety Classification of Structures, Systems and Components in Nuclear Power Plants, IAEA, Vienna, Austria, 2014.
  2. M. Borysiewicz, K. Kowal, S. Potempski, An application of the value tree analysis methodology within the integrated risk informed decision making for the nuclear facilities, Reliab. Eng. Syst. Saf. 139 (2015) 113-119, https://doi.org/10.1016/j.ress.2015.02.013.
  3. International Atomic Energy Agency (IAEA), IAEA Safety Standards Series No, SSR-3: Safety of Research Reactors, IAEA, Vienna, Austria, 2016.
  4. International Atomic Energy Agency (IAEA), IAEA-TECDOC-1787: Application of the Safety Classification of Structures, Systems and Components in Nuclear Power Plants, IAEA, Vienna, Austria, 2016.
  5. U.S., Nuclear Regulatory Commission (US NRC), 10FCR50 Appendix A: General Design Criteria for Nuclear Power Plants, US NRC, Washington DC, USA, 2004.
  6. U.S., Nuclear Regulatory Commission (US NRC), Regulatory Guide 2.5: Quality Assurance Program Requirements for Research and Test Reactors, US NRC, Washington DC, USA, 1989.
  7. American National Standards Institute (ANSI), ANSI/ANS-15.8-1995 (R2013): Quality Assurance Program Requirements for Research Reactors, ANSI, Washington DC, USA, 2013.
  8. U.S., Nuclear Regulatory Commission (US NRC), 10CFR50.69: Risk-Informed Categorization and Treatment of Structures, Systems and Components for Nuclear Power Reactors, US NRC, Washington DC, USA, 2004.
  9. I.S. Kim, S.K. Ahn, K.M. Oh, Deterministic and risk-informed approaches for safety analysis of advanced reactors: Part II, Risk-informed approaches, Reliab. Eng. Syst. Saf. 95 (2010) 459-468, https://doi.org/10.1016/j.ress.2009.12.004.
  10. M.C. Cheok, G.W. Parry, R.R. Sherry, Use of importance measures in risk-informed regulatory applications, Reliab. Eng. Syst. Saf. 60 (1998) 213-226, https://doi.org/10.1016/S0951-8320(97)00144-0.
  11. J.S. Ha, P.H. Seong, A method for risk-informed safety significance categorization using the analytic hierarchy process and bayesian belief networks, Reliab. Eng. Syst. Saf. 83 (2004) 1-15, https://doi.org/10.1016/j.ress.2003.08.002.
  12. J. Wang, F. Wang, J. Wang, S. Chen, L. Hu, Y. Li, Ch Li, A new importance assessment method for risk-informed SSC categorization, Int. J. Energy Res. 42 (2018) 1779-1786, https://doi.org/10.1002/er.3985.
  13. M. Sun, J. Wang, F. Wang, J. Yu, Y. Yin, A new integrated SSCs safety classification method and a case study on CN HCCB TES, Ann. Nucl. Energy 145 (2020), 107594, https://doi.org/10.1016/j.anucene.2020.107594.
  14. The American Society of Mechanical Engineers (ASME), ASME Boiler and Pressure Vessel Code Section III, ASME, New York, USA, 2017.
  15. J.-E. Holmberg, I. Mannist € o, Risk-informed classi € fication of systems, structures and components, Rakenteiden Mekaniikka 41 (2008) 90-98. http://rmseura.tkk.fi/rmlehti/2008/nro2/RakMek_41_2_2008_3.pdf.
  16. K. Kunitomi, S. Shiozawa, Safety design, Nucl. Eng. Des. 233 (2004) 45-58, https://doi.org/10.1016/j.nucengdes.2004.07.010.
  17. T.-R. Kim, Safety classification of systems, structures, and components for pool-type research reactors, Nucl. Eng. Technol. 48 (2016) 1015-1021, https://doi.org/10.1016/j.net.2016.02.009.
  18. Z. Wu, S. Xi, Safety functions and component classification for the HTR-10, Nucl. Eng. Des. 218 (2002) 103-110, https://doi.org/10.1016/S0029-5493(02)00202-9.
  19. Idaho National Laboratory (INL), INL/EXT-10-19509: Next Generation Nuclear Plant Structures, Systems, and Components Safety Classification White Paper, INL, Idaho Falls, USA, 2010.
  20. K.J. Kang, S.I. Wu, J. Yoon, Introduction to South Africa's safety classification, in: Transactions of the Korean Nuclear Society Autumn Meeting, 2012. Gyeongju, Korea, October 25-26.
  21. K. Moodley, D.A.H. Arndt, S.M. Malaka, A case study SAFARI-1: implementation of the safety classification in the existing facilities using a graded approach, in: European Research Reactors Conference Proceedings, March, Berlin, Germany, 2016, pp. 13-17.
  22. P.V. Varde, S. Sankar, A.K. Verma, An operator support system for research reactor operations and fault diagnosis through a connectionist framework and PSA based knowledge based systems, Reliab. Eng. Syst. Saf. 60 (1998) 53-69, https://doi.org/10.1016/S0951-8320(97)00154-3.
  23. P.V. Varde, M.G. Pecht, Role of prognostics in support of integrated risk-based engineering in nuclear power plant safety, Int. J. Prognostics Health Manag. 3 (2012) 1-23, https://doi.org/10.36001/ijphm.2012.v3i1.1362.
  24. D. Grabaskas, J. Andrus, D. Henneke, J. Li, M. Bucknor, M. Warner, Development of the versatile test reactor probabilistic risk assessment, Nucl. Sci. Eng. 196 (2022) 278-288, https://doi.org/10.1080/00295639.2021.2014741.
  25. M. Maskin, P.P. Tom, T.A. Lanyau, F.C.M. Brayon, F. Mohamed, M.F. Saad, A.R. Ismail, M.P.H. Abu, Development and methodology of level 1 probability safety assessment at PUSPATI TRIGA reactor, AIP Conf. Proc. 1584 (2014) 240-244, https://doi.org/10.1063/1.4866138.
  26. International Atomic Energy Agency (IAEA), IAEA Safety Standards Series No, GSR Part 3: Radiation Protection and Safety of Radiation Sources, International Basic Safety Standards, IAEA, Vienna, Austria, 2014.
  27. International Atomic Energy Agency (IAEA), EPR-D-VALUES 2006: Dangerous Quantities of Radioactive Material, (D-values), IAEA, Vienna, Austria, 2006.