DOI QR코드

DOI QR Code

Positional correction of a 3D position-sensitive virtual Frisch-grid CZT detector for gamma spectroscopy and imaging based on a theoretical assumption

  • Younghak Kim (Health Science Research Center, Korea University) ;
  • Kichang Shin (Department of Health and Safety Convergence Science, Korea University) ;
  • Aleksey Bolotnikov (Instrumentation Division, Brookhaven National Laboratory) ;
  • Wonho Lee (School of Health and Environmental Science, Korea University)
  • 투고 : 2022.08.11
  • 심사 : 2023.01.15
  • 발행 : 2023.05.25

초록

The virtual Frisch-grid method for room-temperature radiation detectors has been widely used because of its simplicity and high performance. Recently, side electrodes were separately attached to each surface of the detectors instead of covering the entire detector surface with a single electrode. The side-electrode structure enables the measurement of the three-dimensional (3D) gamma-ray interaction in the detector. The positional information of the interaction can then be utilized to precisely calibrate the response of the detector for gamma-ray spectroscopy and imaging. In this study, we developed a 3D position-sensitive 5 × 5 × 12 mm3 cadmium-zinc-telluride (CZT) detector and applied a flattening method to correct detector responses. Collimated gamma-rays incident on the surface of the detector were scanned to evaluate the positional accuracy of the detection system. Positional distributions of the radiation interactions with the detector were imaged for quantitative and qualitative evaluation. The energy spectra of various radioisotopes were measured and improved by the detector response calibration according to the calculated positional information. The energy spectra ranged from 59.5 keV (emitted by 241Am) to 1332 keV (emitted by 60Co). The best energy resolution was 1.06% at 662 keV when the CZT detector was voxelized to 20 × 20 × 10.

키워드

과제정보

This work was supported by the Nuclear Safety Research Program through the National Research Foundation of Korea (NRF) granted by the Ministry of Science and ICT (MSIT) of the Republic of Korea (No. 2020R1A2C1005924, No. 2021M2E8A1046041), and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government (MOTIE) (20214000000070, Promoting Expert for Energy Industry Advancement in the Field of Radiation Technology).

참고문헌

  1. S.D. Sordo, L. Abbene, E. Caroli, A.M. Mancini, A. Zappettini, P. Ubertini, Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications, Sensors 9 (2009) 3491-3526, https://doi.org/10.3390/s90503491. 
  2. Q. Zhang, C. Zhang, Y. Lu, K. Yang, Q. Ren, Progress in the development of CdZnTe unipolar detectors for different anode geometries and data corrections, Sensors 13 (2013) 2447-2474, https://doi.org/10.3390/s130202447. 
  3. Z. He, W. Li, G.F. Knoll, D.K. Wehe, J. Berry, C.M. Stahle, 3-D position sensitive CdZnTe gamma-ray spectrometers, Nucl. Instrum. Methods A. 422 (1999) 173-178, https://doi.org/10.1016/S0168-9002(98)00950-4. 
  4. P.N. Luke, Unipolar charge sensing with coplanar electrodes - application to semiconductor detectors, IEEE Trans. Nucl. Sci. 42 (1995) 207-213, https://doi.org/10.1109/23.467848. 
  5. Z. He, G.F. Knoll, D.K. Wehe, R. Rojeski, C.H. Mastrangelo, M. Hammig, C. Barrett, A. Uritani, 1-D position sensitive single carrier semiconductor detectors, Nucl. Instrum. Methods Phys. Res. 380 (1996) 228-231, https://doi.org/10.1016/S0168-9002(96)00352-X. 
  6. D.S. McGregor, Z. He, H.A. Seifert, D.K. Wehe, R.A. Rojeski, Single charge carrier type sensing with a parallel strip pseudo-frisch-grid CdZnTe semiconductor radiation detector, Appl. Phys. Lett. 72 (1998) 792-794, https://doi.org/10.1063/1.120895. 
  7. V. Ivanov, P. Dorogav, R. Arlt, Development of Large Volume Hemispheric CdZnTe Detectors for Use in Safeguards Applications, Proceedings of ESARDA 19th Annual Symposium on Safeguards and Nuclear Material Management, 1997, pp. 447-453. 
  8. K. Parnham, J.B. Glick, Cs Szeles, K.G. Lynn, Performance improvement of CdZnTe detectors using modified two-terminal electrode geometry, J. Cryst. Growth 214-215 (2000) 1152-1154, https://doi.org/10.1016/S0022-0248(00)00293-1. 
  9. G. Montemont, M. Arques, L. Verger, J. Rustique, A capacitive Frisch grid structure for CdZnTe detectors, IEEE Trans. Nucl. Sci. 48 (2001) 278-281, https://doi.org/10.1109/23.940065. 
  10. W.J. McNeil, D.S. McGregor, A.E. Bolotnikov, G.W. Wright, R.B. James, Single-charge-carrier-type sensing with an insulating Frisch ring CdZnTe semiconductor radiation detector, Appl. Phys. Lett. 84 (2004) 1988-1990, https://doi.org/10.1063/1.1668332. 
  11. A.E. Bolotnikov, G.C. Camarda, G.A. Carini, M. Fiederle, L. Li, D.S. McGregor, W. McNeil, G.W. Wright, R.B. James, Performance characteristics of Frisch-Ring CdZnTe detectors, IEEE Trans. Nucl. Sci. 53 (2006) 607-614, https://doi.org/10.1109/TNS.2006.871509. 
  12. A.E. Bolotnikov, J. Butcher, G.S. Camarda, Y. Cui, G. De Geronimo, J. Fried, R. Gul, P.M. Fochuk, M. Hamade, A. Hossain, K.H. Kim, O.V. Kopach, M. Petryk, E. Vernon, G. Yang, R.B. James, Array of virtual frisch-grid CdZnTe detectors with common cathode readout for correcting charge signals and rejection of incomplete charge-collection events, IEEE Trans. Nucl. Sci. 59 (2012) 1544-1551, https://doi.org/10.1109/TNS.2012.2187932. 
  13. A.E. Bolotnikov, K. Ackley, G.S. Camarda, C. Cherches, Y. Cui, G. De Geronimo, J. Fried, D. Hodges, A. Hossain, W. Lee, G. Mahler, M. Maritato, M. Petryk, U. Roy, C. Salwen, E. Vernon, G. Yang, R.B. James, An array of virtual frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras, Rev. Sci. Instrum. 86 (2015), 073114, https://doi.org/10.1063/1.4927455. 
  14. W. Lee, A. Bolotnikov, T. Lee, G. Camarda, Y. Cui, R. Gul, A. Hossain, R. Utpal, G. Yang, R. James, Mini Compton Camera Based on an array of virtual frisch-grid CdZnTe detectors, IEEE Trans. Nucl. Sci. 63 (2016) 259-265, https://doi.org/10.1109/TNS.2015.2514120. 
  15. Y. Kim, W. Lee, Development of a virtual frisch-grid CZT detector based on the array structure, J. Radiat. Prot. Res. 45 (2020) 35-44, https://doi.org/10.14407/jrpr.2020.45.1.35. 
  16. A.E. Bolotnikov, G.S. Camarda, Y. Cui, G. De Geronimo, J. Fried, A. Hossain, K. Lee, G. Mahler, M. Maritato, M. Marshall, M. Petryk, U. Roy, E. Vernon, G. Yang, R.B. James, Use of high-granularity position sensing to correct response non-uniformities of CdZnTe detectors, Appl. Phys. Lett. 104 (2014) 263503-1-263503-5, https://doi.org/10.1063/1.4883402. 
  17. Z. He, Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors, Nucl. Instrum. Methods Phys. Res. 463 (2001) 250-267, https://doi.org/10.1016/S0168-9002(01)00223-6. 
  18. J.K. Polack, M. Hirt, J. Sturgess, N.D. Sferrazza, A.E. Bolotnikov, S. Babalola, G.S. Camarda, Y. Cui, S.U. Egarievwe, P.M. Fochuk, R. Gul, A. Hossain, K. Kim, O.V. Kopach, L. Marchini, G. Yang, L. Xu, R.B. James, Variation of electric shielding on virtual frisch-grid detectors, Nucl. Instrum. Methods Phys. Res. 621 (2010) 424-430, https://doi.org/10.1016/j.nima.2010.05.035. 
  19. A.E. Bolotnikov, G.S. Camarda, Y. Cui, G. De Geronimo, J. Fried, R. Gul, A. Hossain, K. Kim, G. Yang, E. Vernon, R.B. James, Rejecting incomplete charge-collection events in CdZnTe and other semiconductor detectors, Nucl. Instrum. Methods Phys. Res. A. 664 (2012) 317-323, https://doi.org/10.1016/j.nima.2011.10.066. 
  20. L. Ocampo Giraldo, A.E. Bolotnikov, G.S. Camarda, G. De Geronimo, J. Fried, D. Hodges, A. Hossain, E. Vernon, R.B. James, A linear array of position-sensitive virtual Frisch-grid CdZnTe for low-energy gamma rays, Nucl. Instrum. Methods Phys. Res. 903 (2018) 204-214, https://doi.org/10.1016/j.nima.2018.06.082. 
  21. Aleksey E. Bolotnikov, Giuseppe S. Camarda, Gianluidgi De Geronimo, Anwar Hossain, A. Luis, Ocampo Giraldo, Yang Ge, Ralph B. James, Position-sensitive Frisch-grid CdZnTe detectors for gamma-ray spectroscopy and imaging, Proc. SPIE 11114 (2019) 111140S, https://doi.org/10.1117/12.2528317. 
  22. I. Kuvvetli, C. Budtz-Jorgensen, A. Zappettini, N. Zambelli, G. Benassi, E. Kalemci, E. Caroli, J.B. Stephen, N. Auricchio, A 3D CZT high resolution detector for X- and gamma-ray astronomy, Proc. SPIE 9154 (2014) 91540X, https://doi.org/10.1117/12.2055119. 
  23. C. Budtz-Jorgensen, I. Kuvvetli, New position algorithms for the 3-D CZT drift detector, IEEE Trans. Nucl. Sci. 64 (2017) 1611-1618, https://doi.org/10.1109/TNS.2017.2696574. 
  24. Y. Kim, T. Lee, W. Lee, Radiation measurement and imaging using 3D position sensitive pixelated CZT detector, Nucl. Eng. Technol. 51 (2019) 1417-1427, https://doi.org/10.1016/j.net.2019.03.009. 
  25. C.R. Cremat, 110-R2 Charge Sensitive Preamplifier, 2018. https://www.cremat.com/CR-110-R2.pdf. 
  26. C.R.-S. Cremat, X Gaussian Shaping Amplifier Instrument, 2018. https://www.cremat.com/CR-S2.pdf. 
  27. A.E. Bolotnikov, G.S. Camarda, G. De Geronimo, J. Fried, D. Hodges, A. Hossain, K. Kim, G. Mahler, L. Ocampo Giraldo, E. Vernon, G. Yang, R.B. James, A 4×4 Array module of position-sensitive virtual Frisch-grid CdZnTe detectors for gamma-ray imaging spectrometers, Nucl. Instrum. Methods Phys. Res. A. 954 (2020), 161036, https://doi.org/10.1016/j.nima.2018.07.090. 
  28. A.E. Bolotnikov, J. MacKenzie, E. Chen, F.J. Kumar, S. Taherion, G. Garini, G. De Geronimo, J. Fried, Kihyun Kim, L. Ocampo Girado, E. Vernon, R.B. James, Performance of 8×8×32 and 10×10×32 mm3 CdZnTe position-sensitive virtual Frisch-grid detectors for high-energy gamma ray cameras, Nucl. Instrum. Methods Phys. Res. A. 969 (2020), 164005, https://doi.org/10.1016/j.nima.2020.164005. 
  29. E. Kalemci, J.L. Matteson, Investigation of charge sharing among electrode strips for a CdZnTe detector, Nucl. Instrum. Methods Phys. Res. A. 478 (2002) 527-537, https://doi.org/10.1016/S0168-9002(01)00892-0. 
  30. A.E. Bolotnikov, N.M. Abdul-Jabbar, S. Babalola, G.S. Camarda, Y. Cui, A. Hossain, E. Jackson, H. Jackson, J.R. James, A.L. Luryi, R.B. James, Optimization of virtual Frisch-grid CdZnTe detector designs for imaging and spectroscopy of gamma rays, Proc. SPIE 6706 (2007), 670603, https://doi.org/10.1117/12.736654.