DOI QR코드

DOI QR Code

A Critical Systematic Review for Inhaled Corticosteroids on Lung Cancer Incidence: Not Yet Concluded Story

  • Suh-Young Lee (Department of Internal Medicine, Seoul National University Hospital) ;
  • Soon Ho Yoon (Department of Radiology, Seoul National University Hospital) ;
  • Hyunsook Hong (Medical Research Collaborating Center, Seoul National University Hospital)
  • 투고 : 2022.06.30
  • 심사 : 2022.12.27
  • 발행 : 2023.04.30

초록

Background: To systematically review studies on inhaled corticosteroids (ICS) and lung cancer incidence in chronic airway disease patients. Methods: We conducted electronic bibliographic searches on OVID-MEDLINE, EMBASE, and the Cochrane Database before May 2020 to identify relevant studies. Detailed data on the study population, exposure, and outcome domains were reviewed. Results: Of 4,058 screened publications, 13 eligible studies in adults with chronic obstructive pulmonary disease (COPD) or asthma evaluated lung cancer incidence after ICS exposure. Pooled hazard ratio and odds ratio for developing lung cancer in ICS exposure were 0.81 (95% confidence interval, 0.64 to 1.02; I2=95.7%) from 10 studies and 1.02 (95% confidence interval 0.50 to 2.07; I2=94.7%) from three studies. Meta-regression failed to explain the substantial heterogeneity of pooled estimates. COPD and asthma were variously defined without spirometry in 11 studies. Regarding exposure assessment, three and 10 studies regarded ICS exposure as a time-dependent and fixed variable, respectively. Some studies assessed ICS use for the entire study period, whereas others assessed ICS use for 6 months to 2 years within or before study entry. Smoking was adjusted in four studies, and only four studies introduced 1 to 2 latency years in their main or subgroup analysis. Conclusion: Studies published to date on ICS and lung cancer incidence had heterogeneous study populations, exposures, and outcome assessments, limiting the generation of a pooled conclusion. The beneficial effect of ICS on lung cancer incidence has not yet been established, and understanding the heterogeneities will help future researchers to establish robust evidence on ICS and lung cancer incidence.

키워드

참고문헌

  1. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention (2021 update). Fontana: GINA; 2021.
  2. Tashkin DP, Strange C. Inhaled corticosteroids for chronic obstructive pulmonary disease: what is their role in therapy? Int J Chron Obstruct Pulmon Dis 2018;13:2587-601. https://doi.org/10.2147/COPD.S172240
  3. Calverley PM, Anderson JA, Celli B, Ferguson GT, Jenkins C, Jones PW, et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med 2007;356:775-89. https://doi.org/10.1056/NEJMoa063070
  4. Tashkin DP, Wechsler ME. Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2018;13:335-49. https://doi.org/10.2147/COPD.S152291
  5. Parimon T, Chien JW, Bryson CL, McDonell MB, Udris EM, Au DH. Inhaled corticosteroids and risk of lung cancer among patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007;175:712-9. https://doi.org/10.1164/rccm.200608-1125OC
  6. Lin P, Fu S, Li W, Hu Y, Liang Z. Inhaled corticosteroids and risk of lung cancer: a systematic review and meta-analysis. Eur J Clin Invest 2021;51:e13434.
  7. Ge F, Feng Y, Huo Z, Li C, Wang R, Wen Y, et al. Inhaled corticosteroids and risk of lung cancer among chronic obstructive pulmonary disease patients: a comprehensive analysis of nine prospective cohorts. Transl Lung Cancer Res 2021;10:1266-76. https://doi.org/10.21037/tlcr-20-1126
  8. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 2010;8:336-41. https://doi.org/10.1016/j.ijsu.2010.02.007
  9. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010;25:603-5. https://doi.org/10.1007/s10654-010-9491-z
  10. Suh YJ, Yoon SH, Hong H, Hahn S, Kang DY, Kang HR, et al. Acute adverse reactions to nonionic iodinated contrast media: a meta-analysis. Invest Radiol 2019;54:589-99. https://doi.org/10.1097/RLI.0000000000000568
  11. Suissa S, Dell'Aniello S, Gonzalez AV, Ernst P. Inhaled corticosteroid use and the incidence of lung cancer in COPD. Eur Respir J 2020;55:1901720.
  12. Raymakers AJN, Sadatsafavi M, Sin DD, FitzGerald JM, Marra CA, Lynd LD. Inhaled corticosteroids and the risk of lung cancer in COPD: a population-based cohort study. Eur Respir J 2019;53:1801257.
  13. Sandelin M, Mindus S, Thuresson M, Lisspers K, Stallberg B, Johansson G, et al. Factors associated with lung cancer in COPD patients. Int J Chron Obstruct Pulmon Dis 2018;13:1833-9. https://doi.org/10.2147/COPD.S162484
  14. Husebo GR, Nielsen R, Hardie J, Bakke PS, Lerner L, D'Alessandro-Gabazza C, et al. Risk factors for lung cancer in COPD: results from the Bergen COPD cohort study. Respir Med 2019;152:81-8. https://doi.org/10.1016/j.rmed.2019.04.019
  15. Sorli K, Thorvaldsen SM, Hatlen P. Use of inhaled corticosteroids and the risk of lung cancer, the HUNT Study. Lung 2018;196:179-84. https://doi.org/10.1007/s00408-018-0092-z
  16. Wang IJ, Liang WM, Wu TN, Karmaus WJJ, Hsu JC. Inhaled corticosteroids may prevent lung cancer in asthma patients. Ann Thorac Med 2018;13:156-62. https://doi.org/10.4103/atm.ATM_367_17
  17. Jian ZH, Huang JY, Lin FC, Nfor ON, Jhang KM, Ku WY, et al. The use of corticosteroids in patients with COPD or asthma does not decrease lung squamous cell carcinoma. BMC Pulm Med 2015;15:154.
  18. Kiri VA, Fabbri LM, Davis KJ, Soriano JB. Inhaled corticosteroids and risk of lung cancer among COPD patients who quit smoking. Respir Med 2009;103:85-90. https://doi.org/10.1016/j.rmed.2008.07.024
  19. Lee YM, Kim SJ, Lee JH, Ha E. Inhaled corticosteroids in COPD and the risk of lung cancer. Int J Cancer 2018;143:2311-8. https://doi.org/10.1002/ijc.31632
  20. Liu SF, Kuo HC, Lin MC, Ho SC, Tu ML, Chen YM, et al. Inhaled corticosteroids have a protective effect against lung cancer in female patients with chronic obstructive pulmonary disease: a nationwide population-based cohort study. Oncotarget 2017;8:29711-21. https://doi.org/10.18632/oncotarget.15386
  21. Kok VC, Horng JT, Huang HK, Chao TM, Hong YF. Regular inhaled corticosteroids in adult-onset asthma and the risk for future cancer: a population-based cohort study with proper person-time analysis. Ther Clin Risk Manag 2015;11:489-99. https://doi.org/10.2147/TCRM.S80793
  22. Lee CH, Hyun MK, Jang EJ, Lee NR, Kim K, Yim JJ. Inhaled corticosteroid use and risks of lung cancer and laryngeal cancer. Respir Med 2013;107:1222-33. https://doi.org/10.1016/j.rmed.2012.12.002
  23. Loeb LA, Ernster VL, Warner KE, Abbotts J, Laszlo J. Smoking and lung cancer: an overview. Cancer Res 1984;44(12 Pt 1):5940-58.
  24. de Torres JP, Marin JM, Casanova C, Cote C, Carrizo S, Cordoba-Lanus E, et al. Lung cancer in patients with chronic obstructive pulmonary disease: incidence and predicting factors. Am J Respir Crit Care Med 2011;184:913-9. https://doi.org/10.1164/rccm.201103-0430OC
  25. Skillrud DM, Offord KP, Miller RD. Higher risk of lung cancer in chronic obstructive pulmonary disease: a prospective, matched, controlled study. Ann Intern Med 1986;105:503-7. https://doi.org/10.7326/0003-4819-105-4-503
  26. Calabro E, Randi G, La Vecchia C, Sverzellati N, Marchiano A, Villani M, et al. Lung function predicts lung cancer risk in smokers: a tool for targeting screening programmes. Eur Respir J 2010;35:146-51. https://doi.org/10.1183/09031936.00049909
  27. Wasswa-Kintu S, Gan WQ, Man SF, Pare PD, Sin DD. Relationship between reduced forced expiratory volume in one second and the risk of lung cancer: a systematic review and meta-analysis. Thorax 2005;60:570-5. https://doi.org/10.1136/thx.2004.037135
  28. Mannino DM, Aguayo SM, Petty TL, Redd SC. Low lung function and incident lung cancer in the United States: data from the first National Health and Nutrition Examination Survey follow-up. Arch Intern Med 2003;163:1475-80. https://doi.org/10.1001/archinte.163.12.1475
  29. Caramori G, Adcock IM, Casolari P, Ito K, Jazrawi E, Tsaprouni L, et al. Unbalanced oxidant-induced DNA damage and repair in COPD: a link towards lung cancer. Thorax 2011;66:521-7. https://doi.org/10.1136/thx.2010.156448
  30. MacNee W. Is chronic obstructive pulmonary disease an accelerated aging disease? Ann Am Thorac Soc 2016;13 Suppl 5:S429-37. https://doi.org/10.1513/AnnalsATS.201602-124AW
  31. Frias C, Garcia-Aranda C, De Juan C, Moran A, Ortega P, Gomez A, et al. Telomere shortening is associated with poor prognosis and telomerase activity correlates with DNA repair impairment in non-small cell lung cancer. Lung Cancer 2008;60:416-25. https://doi.org/10.1016/j.lungcan.2007.11.001
  32. Anzalone G, Arcoleo G, Bucchieri F, Montalbano AM, Marchese R, Albano GD, et al. Cigarette smoke affects the onco-suppressor DAB2IP expression in bronchial epithelial cells of COPD patients. Sci Rep 2019;9:15682.
  33. Zhao B, Han H, Chen J, Zhang Z, Li S, Fang F, et al. MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3. Cancer Lett 2014;342:43-51. https://doi.org/10.1016/j.canlet.2013.08.030
  34. Yang P, Sun Z, Krowka MJ, Aubry MC, Bamlet WR, Wampfler JA, et al. Alpha1-antitrypsin deficiency carriers, tobacco smoke, chronic obstructive pulmonary disease, and lung cancer risk. Arch Intern Med 2008;168:1097-103. https://doi.org/10.1001/archinte.168.10.1097
  35. Haqqani AS, Sandhu JK, Birnboim HC. Expression of interleukin-8 promotes neutrophil infiltration and genetic instability in mutatect tumors. Neoplasia 2000;2:561-8. https://doi.org/10.1038/sj.neo.7900110
  36. Rahman I, Adcock IM. Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J 2006;28:219-42. https://doi.org/10.1183/09031936.06.00053805
  37. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005;6:1133-41. https://doi.org/10.1038/ni1261
  38. Shapiro SD, Goldstein NM, Houghton AM, Kobayashi DK, Kelley D, Belaaouaj A. Neutrophil elastase contributes to cigarette smoke-induced emphysema in mice. Am J Pathol 2003;163:2329-35. https://doi.org/10.1016/S0002-9440(10)63589-4