DOI QR코드

DOI QR Code

Toxic effect in olive flounder Paralichthys olivaceus after intramuscular administration of amprolium hydrochloride

Amprolium hydrochloride 투여에 따른 넙치 (Paralichthys olivaceus)의 독성 영향

  • Sang Hyup Park (Department of Aquatic Life Medicine, Gangneung-Wonju National University) ;
  • Young Kwang Choi (Department of Aquatic Life Medicine, Gangneung-Wonju National University) ;
  • Jeong-wan Do (Pathology Division, National Institute of Fisheries Science) ;
  • Hye-Sung Choi (Pathology Division, National Institute of Fisheries Science) ;
  • Yi Kyung Kim (Department of Aquatic Life Medicine, Gangneung-Wonju National University)
  • 박상협 (강릉원주대학교 수산생명의학과) ;
  • 최영광 (강릉원주대학교 수산생명의학과) ;
  • 도정완 (국립수산과학원 병리연구과) ;
  • 최혜승 (국립수산과학원 병리연구과) ;
  • 김이경 (강릉원주대학교 수산생명의학과)
  • Received : 2023.04.26
  • Accepted : 2023.06.08
  • Published : 2023.06.30

Abstract

The aim of this study was to examine the effect of amprolium hydrochloride on olive flounder Paralichthys olivaceus. Thirty flounder (average weight 230.27 g; average length 27.99 cm) was randomly allocated into six groups, namely, 50, 100, 150, 200, 400 and 600 mg/kg. As measure of acute toxicity the LD50 value of 148.18 mg/kg was obtained. Hematologic analysis was performed on days 1, 3, 7, 14, and 28 after the intramuscular injection of the drug. Among the plasma biochemistry profiles, glutamic oxalate transaminase (GOT) activity and blood urea nitrogen (BUN) were found significantly increased. In addition, histopathology analysis revealed frequent appearance of melanomacrophage center (MMC) and edema in the renal tissues after 20, 40 and 80 mg/kg on day 7, 14, 28. In summary, amprolium exposure seem to cause adverse effects of flounders.

본 연구에서는 넙치(Paralichthys olivaceus, average weight 230.27 g; average length 27.99 cm)에서 amprolium hydrochloride의 주사 투여에 따른 급성독성을 평가하기 위해 50, 100, 150, 200, 400, 600 mg/kg 용량으로 설정하고 단회주사투여한 결과 LD50 값은 148.18 mg/kg이었다. 또한 약물을 주사투여한 후 1, 3, 7, 14, 28일째에 혈액학적 분석을 실시한 결과 GOT 수치는 80 mg/kg 용량구간에서만 대조구에 비해 1일차 및 3일차까지 최고수치를 나타내었으며, BUN 수치는 1일과 3일차 80 mg/kg 용량구간과 7일차에 40 및 80 mg/kg 구간에서 대조구에 비해 유의적인 증가를 나타내었다. 추가적으로 조직학적 변화를 확인한 결과 7, 14, 28일차, 20, 40, 80 mg/kg 용량 구간에서 신장 조직에서 melanomacrophage center와 부종이 관찰되었다. 결과적으로 amprolium hydrochloride 주사 투여는 넙치에서 독성을 나타내기 때문에 넙치의 생체 내 실험에서 여러가지 악영향을 미치는 것으로 보아 상당한 독성이 있는 것으로 판단된다.

Keywords

Acknowledgement

이 논문은 국립수산과학원(P2023202, 넙치쿠도아충 저감화 연구)의 지원에 의해 진행되었음.

References

  1. Ahn, M., Won, S., Kang, B., Gong, P., Yoo, E., Dharaneedharan, S. and Jang, Y.: In vitro effect of two commercial anti-coccidial drugs against myxospores of Kudoa septempunctata genotype ST3 (Myxozoa, Multivalvulida). Parasite., 24, 2017.
  2. Anadon, A. and Martinez-Larranaga, MR.: Veterinary Drugs Residues: Coccidiostats. Encyclopedia of food safety, vol. 3, pp. 63-75, Motarjemi Y, Academic Press, Amsterdam, 2014.
  3. Anderson, E.T., Stoskopf, M.K., Morris Jr, J.A., Clarke, E.O. and Harms, C.A.: Hematology, plasma biochemistry, and tissue enzyme activities of invasive red lionfish captured off North Carolina, USA. J. Aquat. Anim. Health., 22(4): 266-273, 2010. https://doi.org/10.1577/H10-029.1
  4. Athanassopoulou, F., Pappas, I.S. and Bitchava, K.: An overview of the treatments for parasitic disease in Mediterranean aquaculture. Options. Mediterr. Ser. A., 86: 65-83, 2009.
  5. Batshaw, M.L., Brusilow, S., Waber, L., Blom, W., Brubakk, A.M., Burton, B.K., and Schafer, I.A.: Treatment of inborn errors of urea synthesis: activation of alternative pathways of waste nitrogen synthesis and excretion. NEW. ENGL. J. Med., 306(23): 1387-1392, 1982. https://doi.org/10.1056/NEJM198206103062303
  6. Bauchop, T. and King, L.: Amprolium and thiamine pyrophosphotransferase. Adv. Appl. Microbiol., 16: 961, 1968.
  7. Bernet, D., Schmidt, H., Meier, W., Burkhardt-Holm, P. and Wahli, T.: Histopathology in fish: proposal for a protocol to assess aquatic pollution. J. Fish. Dis., 22: 25-34, 1999. https://doi.org/10.1046/j.1365-2761.1999.00134.x
  8. Canton, J.H. and Van Esch, G.J.: The short-term toxicity of some feed additives to different freshwater organisms. Bull. Environ. Contam. Toxicol., 15: 720-725, 1976. https://doi.org/10.1007/BF01685623
  9. Casillas, E., Sundquist, J., and Ames, W.E.: Optimization of assay conditions for, and the selected tissue distribution of, alanine aminotransferase and aspartate aminotransferase of English sole, Parophrys vetulus Girard. J. Fish Biol., 21(2): 197-204, 1982. https://doi.org/10.1111/j.1095-8649.1982.tb03999.x
  10. Directive, C: amending Directive 70/524/EEC concerning additives in feedingstuffs. Off. J. Eur. Comm. L, 235:39-58, 1996
  11. EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, K., Allende, A., Alvarez-Ordonez, A., Bolton, D., Bover-Cid, S., Chemaly, M., Davies, R., De Cesare, A., Herman, L., Hilbert, F., Lindqvist, R., Nauta, M., Ru, G., Simmons, M., Skandamis, P., Suffredini, E., Andersson, D.I., Bampidis, V., Bengtsson-Palme, J., Bouchard D, Ferran A, Kouba M, Lopez Puente S, Lopez-Alonso M, Nielsen SS, Pechova A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liebana E, Lopez-Galvez G, Manini P, Stella P and Peixe, L.: Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 3: Amprolium. EFSA journal. EFSA. J., 19(10): e06854, 2021. https://doi.org/10.2903/j.efsa.2021.6854
  12. Elkin, N.: PoultryMed, 2010.
  13. El-Sayed, Y.S. and Khalil, R.H.: Toxicity, biochemical effects and residue of aflatoxin B1 in marine water-reared sea bass (Dicentrarchus labrax L.). Food. Chem. Toxicol., 47(7), 1606-1609, 2019. https://doi.org/10.1016/j.fct.2009.04.008
  14. Funk, V.A., Olafson, R.W., Raap, M., Smith, D., Aitken, L., Haddow, J.D. and Miller, K.M.: Identification, characterization and deduced amino acid sequence of the dominant protease from Kudoa paniformis and K. thyrsites: a unique cytoplasmic cysteine protease. Comp. Biochem. Physiol. Biochem. Mol. Biol., 149: 477-489, 2008. https://doi.org/10.1016/j.cbpb.2007.11.011
  15. Gropman, A.L., Summar, M. and Leonard, J.V.: Neurological implications of urea cycle disorders. J. Inherit. Metab. Dis., 30:865-879, 2007. https://doi.org/10.1007/s10545-007-0709-5
  16. Hodge, D., Back, D.J., Gibbons, S., Khoo, S.H. and Marzolini, C.: Pharmacokinetics and drug-drug interactions of long-acting intramuscular cabotegravir and rilpivirine. Clin. Pharmacokinet., 60:835-853, 2021. https://doi.org/10.1007/s40262-021-01005-1
  17. Hwang, U.K., Kang, J.C. and Kim, J.H.: TBT 노출에 따른 돌돔, Oplegnathus fasciatus의 성장 및 혈액성분의 변화. 한국어병학회지, 26:219-229, 2013. https://doi.org/10.7847/JFP.2013.26.3.219
  18. Hyatt, M.W., Waltzek, T.B., Kieran, E.A., Frasca Jr, S. and Lovy, J.: Diagnosis and treatment of multi-species fish mortality attributed to Enteromyxum leei while in quarantine at a US aquarium. Dis. Aquat. Organ., 132:37-48, 2018. https://doi.org/10.3354/dao03303
  19. Joo, G.E and Sohng, K.Y.: 전산화 단층촬영을 이용한 한국 성인의 둔부 피하지방두께 측정: 근육주사 바늘길이 산정을 위한 기초조사. Journal of Korean Academy of Nursing, 40(2):247-254, 2010. https://doi.org/10.4040/jkan.2010.40.2.247
  20. Joo, M.S., Kim, B.S., Kim, D.H., Lee, J.H., Seo, J.S., Kwon, M.G. and Park, C.I.: Tiamulin 항생제가 Streptococcus parauberis KSP28에 감염된 넙치(Paralichthys olivaceus)에 나타내는 치료효과와 부작용. 수산해양교육연구, 31(6), 1592-1606, 2019. https://doi.org/10.13000/JFMSE.2019.12.31.6.1592
  21. Kamath, P.S.: Concise Review for Primary-Care Physicians. Mayo. Clin. Proc., 71: 1089-1095, 1996. https://doi.org/10.4065/71.11.1089
  22. Kan, C.A., van Leeuwen, W. and van Gend, H.W.: Amprolium residues in eggs following administration of amprolium/ethopabate in laying hens and breeding hens. Tijdschr. Diergeneeskd., 114(2): 76-82, 1989.
  23. Kaplan, M.M. and Righetti, A.: Induction of rat liver alkaline phosphatase: the mechanism of the serum elevation in bile duct obstruction. J. Clin. Invest., 49: 508-516, 1970. https://doi.org/10.1172/JCI106260
  24. Khattak, I.U.D., and Hafeez, M.A.: Effect of malathion on blood parameters of the fish, Cyprinion watsoni. Pak. J. Zool., 28(1): 45-49, 1996.
  25. Kudo, G., Barnett, H.J. and Nelson, R.W.: Pacific whiting, merluccius productus, fillets with. Fish. Bull., 85: 745, 1987.
  26. Kurtovic, B., Teskeredzic, E. and Teskeredzic, Z.: Histological comparison of spleen and kidney tissue from farmed and wild European sea bass (Dicentrarchus labrax L.). Acta Adriat., 49(2): 147-154, 2008.
  27. Lalles, J.P.: Biology, environmental and nutritional modulation of skin mucus alkaline phosphatase in fish: A review. Fish Shellfish Immunol., 89: 179-186, 2019. https://doi.org/10.1016/j.fsi.2019.03.053
  28. Matsukane, Y., Sato, H., Tanaka, S., Kamata, Y. and Sugita-Konishi, Y.: Kudoa septempunctata n. sp. (Myxosporea: Multivalvulida) from an aquacultured olive flounder (Paralichthys olivaceus) imported from Korea. J. Parasitol. Res., 107: 865-872, 2010. https://doi.org/10.1007/s00436-010-1941-8
  29. Mcdougald L.R. and REID W.M.: Coccidiosis. In Diseases of Poultry, pp.865-883, 10th ed., Iowa State University Press, Ames, Calnek, B.W., 1997.
  30. Melefa, T.D., Mgbenka, B.O., Aguzie, I.O., Andong, F.A., Nwakor, U. and Nwani, C.D.: Morphological, haematological and biochemical changes in African catfish Clarias gariepinus (Burchell 1822) juveniles exposed to clotrimazole. Comp. Biochem.: Toxicol. Pharmacol., 236, 108815, 2020.
  31. Montero, D., Blazer, V.S., Socorro, J., Izquierdo, M.S. and Tort, L.: Dietary and culture influences on macrophage aggregate parameters in gilthead seabream (Sparus aurata) juveniles. Aquac., 179(1-4): 523-534, 1999. https://doi.org/10.1016/S0044-8486(99)00185-4
  32. Moraes, J.O., Rodrigues, S.D.C., Pereira, L.M., Medeiros, R.D.C.N., de Cordova, C.A.S. and de Cordova, F.M.: Amprolium exposure alters mice behavior and metabolism in vivo. Animal. Model. Exp. Med., 1: 272-281, 2018. https://doi.org/10.1002/ame2.12040
  33. Oner, M., Atli, G. and Canli, M.: Changes in serum bio- chemical parameters of freshwater fish Oreochromis niloticus following prolonged metal (Ag, Cd, Cr, Cu, Zn) exposures. Environ. Toxicol. Chem., 27(2), 360-366, 2008. https://doi.org/10.1897/07-281R.1
  34. Ooi, K., Shiraki, K., Morishita, Y., Nobori, T.: High-molecular intestinal alkaline phosphatase in chronic liver diseases. J. Clin. Lab. Anal., 21:133-139, 2007. https://doi.org/10.1002/jcla.20178
  35. Perumal, S., Gopal Samy, M.V. and Subramanian, D.: Developmental toxicity, antioxidant, and marker enzyme assessment of swertiamarin in zebrafish (Danio rerio). J. Biochem. Mol. Toxicol., 35(9), e22843, 2021.
  36. Peters, M.M., Jones, T.W., Monks, T.J. and Lau, S.S.: Cytotoxicity and cell-proliferation induced by the nephrocarcinogen hydroquinone and its nephrotoxic metabolite 2, 3, 5-(tris-glutathion-S-yl) hydroquinone. J. Carcinog., 18(12): 2393-2401, 1997. https://doi.org/10.1093/carcin/18.12.2393
  37. Rangasamy, B., Hemalatha, D., Shobana, C., Nataraj, B. and Ramesh, M.: Developmental toxicity and biological responses of zebrafish (Danio rerio) exposed to anti-inflammatory drug ketoprofen. Chemosphere, 213, 423-433, 2018. https://doi.org/10.1016/j.chemosphere.2018.09.013
  38. Ramesh, M., Anitha, S., Poopal, R.K. and Shobana, C.: Evaluation of acute and sublethal effects of chloroquine (C18H26CIN3) on certain enzymological and histopathological biomarker responses of a fresh- water fish Cyprinus carpio. Toxicol. Rep., 5, 18-27, 2018. https://doi.org/10.1016/j.toxrep.2017.11.006
  39. Roche, H. and Boge, G.: In vivo effects of phenolic compounds on blood parameters of a marine fish (Dicentrarchus labrax). Comp. Biochem. Physiol. C., 125: 345-353, 2000.
  40. Shahsavani, D., Mohri, M. and Gholipour Kanani, H.: Determination of normal values of some blood serum enzymes in Acipenser stellatus Pallas. Fish physiol. Biochem., 36:39-43, 2010.
  41. Shim, J.D., Hwang, S.D., Jang, S.Y., Kim, T.W. and Jeong, J.M.: Monitoring of the mortalities in oliver flounder (Paralichthys olivaceus) farms of Korea. J. Fish. Dis., 3: 29-35, 2019.
  42. Sitja-Bobadilla, A.: Can Myxosporean parasites com- promise fish and amphibian reproduction?. Proc. R. Soc. Lond. B. Biol. Sci, 276: 2861-2870, 2009. https://doi.org/10.1098/rspb.2009.0368
  43. Steinel, N.C. and Bolnick, D.I.: Melanomacrophage centers as a histological indicator of immune function in fish and other poikilotherms. Front. Immunol., 8: 827, 2017.
  44. Yin, J., Collier, A.C., Barr, A.M., Honer, W.G. and Procyshyn, R.M.: Paliperidone palmitate long-acting injectable given intramuscularly in the deltoid versus the gluteal muscle: are they therapeutically equivalent?. J. Clin. Psychopharmacol., 35(4): 447-449, 2015. https://doi.org/10.1097/JCP.0000000000000361
  45. Yokoyama, H., Funaguma, N. and Kobayashi, S.: In vitro inactivation of Kudoa septempunctata spores infecting the muscle of olive flounder Paralichthys olivaceus. Foodborne Pathog. Dis., 13(1), 21-27, 2016. https://doi.org/10.1089/fpd.2015.2003
  46. Yokoyama, H., Whipps, C.M., Kent, M.L., Mizuno, K. and Kawakami, H.: Kudoa thyrsites from Japanese flounder and Kudoa lateolabracis n. sp. from Chinese sea bass: causative myxozoans of post-mortem myoliquefaction. Fish Pathol., 39(2), 79-85, 2004. https://doi.org/10.3147/jsfp.39.79
  47. Yokoyama, H., Yanagida, T and Shirakashi, S.: Kudoa ogawai n. sp.(Myxozoa: Multivalvulida) from the trunk muscle of Pacific barrelfish Hyperoglyphe japonica (Teleostei: Centeolophidae) in Japan. Parasitol. Res., 110, 2247-2254, 2012. https://doi.org/10.1007/s00436-011-2756-y
  48. Yoshimura, H. and Endoh, Y.S.: Acute toxicity to freshwater organisms of antiparasitic drugs for veterinary use. Environ. Toxicol. Chem., 20: 60-66, 2005. https://doi.org/10.1002/tox.20078
  49. 동물용의약품등 편람: 한국동물약품협회, 2001.